These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 32326874)
1. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related]
2. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
3. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. Warnke PH; Seitz H; Warnke F; Becker ST; Sivananthan S; Sherry E; Liu Q; Wiltfang J; Douglas T J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):212-7. PubMed ID: 20091914 [TBL] [Abstract][Full Text] [Related]
4. Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. Rodrigues AFM; Torres PMC; Barros MJS; Presa R; Ribeiro N; Abrantes JCC; Belo JH; Amaral JS; Amaral VS; Bañobre-López M; Bettencourt A; Sousa A; Olhero SM Biomed Mater; 2020 Dec; 16(1):015011. PubMed ID: 32750692 [TBL] [Abstract][Full Text] [Related]
5. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Bertol LS; Schabbach R; Loureiro Dos Santos LA J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883 [TBL] [Abstract][Full Text] [Related]
6. 3D printed β-tricalcium phosphate versus synthetic bone mineral scaffolds: A comparative in vitro study of biocompatibility. Slavin BV; Mirsky NA; Stauber ZM; Nayak VV; Smay JE; Rivera CF; Mijares DQ; Coelho PG; Cronstein BN; Tovar N; Witek L Biomed Mater Eng; 2024; 35(4):365-375. PubMed ID: 38578877 [TBL] [Abstract][Full Text] [Related]
7. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
8. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]
9. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415 [TBL] [Abstract][Full Text] [Related]
10. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. Wilson CE; van Blitterswijk CA; Verbout AJ; Dhert WJ; de Bruijn JD J Mater Sci Mater Med; 2011 Jan; 22(1):97-105. PubMed ID: 21069558 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
12. On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. Houmard M; Fu Q; Genet M; Saiz E; Tomsia AP J Biomed Mater Res B Appl Biomater; 2013 Oct; 101(7):1233-42. PubMed ID: 23650043 [TBL] [Abstract][Full Text] [Related]
13. [Research on sintering process of tricalcium phosphate bone tissue engineering scaffold based on three-dimensional printing]. Man X; Suo H; Liu J; Xu M; Wang L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):112-118. PubMed ID: 32096384 [TBL] [Abstract][Full Text] [Related]
14. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. Lim HK; Hong SJ; Byeon SJ; Chung SM; On SW; Yang BE; Lee JH; Byun SH Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971749 [TBL] [Abstract][Full Text] [Related]
15. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794 [TBL] [Abstract][Full Text] [Related]
17. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656 [TBL] [Abstract][Full Text] [Related]
18. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering. Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006 [TBL] [Abstract][Full Text] [Related]
19. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
20. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60:40 for bone tissue engineering applications. Wang Y; Wang K; Li X; Wei Q; Chai W; Wang S; Che Y; Lu T; Zhang B PLoS One; 2017; 12(4):e0174870. PubMed ID: 28406922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]