These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 32327146)
21. Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Li P; Lin Y; Zhang H; Wang S; Qiu D; Guo L Virology; 2016 Feb; 489():86-94. PubMed ID: 26744993 [TBL] [Abstract][Full Text] [Related]
22. Fusarium graminearum from expression analysis to functional assays. Hallen-Adams HE; Cavinder BL; Trail F Methods Mol Biol; 2011; 722():79-101. PubMed ID: 21590414 [TBL] [Abstract][Full Text] [Related]
23. Mycoviruses Increase the Attractiveness of Schiwek S; Slonka M; Alhussein M; Knierim D; Margaria P; Rose H; Richert-Pöggeler KR; Rostás M; Karlovsky P Toxins (Basel); 2024 Mar; 16(3):. PubMed ID: 38535797 [TBL] [Abstract][Full Text] [Related]
24. A Phenome-Wide Association Study of the Effects of Yu J; Kim KH Front Microbiol; 2021; 12():622261. PubMed ID: 33643250 [TBL] [Abstract][Full Text] [Related]
25. Integration of proteome and transcriptome data reveals the mechanism involved in controlling of Fusarium graminearum by Saccharomyces cerevisiae. Zhao L; Cheng Y; Li B; Gu X; Zhang X; Boateng NAS; Zhang H J Sci Food Agric; 2019 Oct; 99(13):5760-5770. PubMed ID: 31162844 [TBL] [Abstract][Full Text] [Related]
26. Intraspecies Interaction of Fusarium graminearum Contributes to Reduced Toxin Production and Virulence. Walkowiak S; Bonner CT; Wang L; Blackwell B; Rowland O; Subramaniam R Mol Plant Microbe Interact; 2015 Nov; 28(11):1256-67. PubMed ID: 26125491 [TBL] [Abstract][Full Text] [Related]
27. Facilitative and synergistic interactions between fungal and plant viruses. Bian R; Andika IB; Pang T; Lian Z; Wei S; Niu E; Wu Y; Kondo H; Liu X; Sun L Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3779-3788. PubMed ID: 32015104 [TBL] [Abstract][Full Text] [Related]
28. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Liu N; Fan F; Qiu D; Jiang L Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322 [TBL] [Abstract][Full Text] [Related]
29. Time-resolved dissection of the molecular crosstalk driving Fusarium head blight in wheat provides new insights into host susceptibility determinism. Fabre F; Vignassa M; Urbach S; Langin T; Bonhomme L Plant Cell Environ; 2019 Jul; 42(7):2291-2308. PubMed ID: 30866080 [TBL] [Abstract][Full Text] [Related]
30. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Zou C; Cao X; Zhou Q; Yao Z Viruses; 2024 Feb; 16(2):. PubMed ID: 38400029 [TBL] [Abstract][Full Text] [Related]
31. Identifying transcription factors associated with Fusarium graminearum virus 2 accumulation in Fusarium graminearum by phenome-based investigation. Kwon G; Yu J; Kim KH Virus Res; 2023 Mar; 326():199061. PubMed ID: 36738934 [TBL] [Abstract][Full Text] [Related]
32. Two Novel Relative Double-Stranded RNA Mycoviruses Infecting Fusarium poae Strain SX63. Wang L; Zhang J; Zhang H; Qiu D; Guo L Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27144564 [TBL] [Abstract][Full Text] [Related]
33. The complete genome sequence of a double-stranded RNA mycovirus from Fusarium graminearum strain HN1. Wang L; Wang S; Yang X; Zeng H; Qiu D; Guo L Arch Virol; 2017 Jul; 162(7):2119-2124. PubMed ID: 28299481 [TBL] [Abstract][Full Text] [Related]
34. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Yang F; Jensen JD; Svensson B; Jørgensen HJ; Collinge DB; Finnie C Proteomics; 2010 Nov; 10(21):3748-55. PubMed ID: 20925056 [TBL] [Abstract][Full Text] [Related]
35. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Harris LJ; Balcerzak M; Johnston A; Schneiderman D; Ouellet T Fungal Biol; 2016 Jan; 120(1):111-23. PubMed ID: 26693688 [TBL] [Abstract][Full Text] [Related]
36. Mycovirus Fusarium oxysporum f. sp. dianthi Virus 1 Decreases the Colonizing Efficiency of Its Fungal Host. Torres-Trenas A; Prieto P; Cañizares MC; García-Pedrajas MD; Pérez-Artés E Front Cell Infect Microbiol; 2019; 9():51. PubMed ID: 30915279 [TBL] [Abstract][Full Text] [Related]
37. Comparative transcriptome analysis of Fusarium graminearum challenged with distinct fungicides and functional analysis of FgICL gene. Guo X; He K; Li M; Zhang Y; Jiang J; Qian L; Gao X; Zhang C; Liu S Genomics; 2024 Jul; 116(4):110869. PubMed ID: 38797456 [TBL] [Abstract][Full Text] [Related]
38. Processing of the capsid proteins of the Betachrysovirus Fusarium graminearum virus-China 9 (FgV-ch9). Lutz T; Petersen JM; Yanık C; de Oliveira C; Heinze C Virology; 2021 Nov; 563():50-57. PubMed ID: 34419885 [TBL] [Abstract][Full Text] [Related]
39. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum. Perochon A; Jianguang J; Kahla A; Arunachalam C; Scofield SR; Bowden S; Wallington E; Doohan FM Plant Physiol; 2015 Dec; 169(4):2895-906. PubMed ID: 26508775 [TBL] [Abstract][Full Text] [Related]
40. Proteomic analysis of Fusarium graminearum treated by the fungicide JS399-19. Hou Y; Zheng Z; Xu S; Chen C; Zhou M Pestic Biochem Physiol; 2013 Sep; 107(1):86-92. PubMed ID: 25149240 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]