These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32327393)

  • 1. Editorial overview: Biological control of plant invaders: a continued stimulus and yet untapped potential to link and advance applied and basic research.
    Muller-Scharer H; Schaffner U
    Curr Opin Insect Sci; 2020 Apr; 38():v-viii. PubMed ID: 32327393
    [No Abstract]   [Full Text] [Related]  

  • 2. Biocontrol. Loosing the louse on Europe's largest invasive pest.
    Carpenter J
    Science; 2011 May; 332(6031):781. PubMed ID: 21566170
    [No Abstract]   [Full Text] [Related]  

  • 3. Biocontrol of invasive weeds under climate change: progress, challenges and management implications.
    Sun Y; Ding J; Siemann E; Keller SR
    Curr Opin Insect Sci; 2020 Apr; 38():72-78. PubMed ID: 32200301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-release monitoring in classical biological control of weeds: assessing impact and testing pre-release hypotheses.
    Schaffner U; Hill M; Dudley T; D'Antonio C
    Curr Opin Insect Sci; 2020 Apr; 38():99-106. PubMed ID: 32278264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to better predict long-term benefits and risks in weed biocontrol: an evolutionary perspective.
    Müller-Schärer H; Bouchemousse S; Litto M; McEvoy PB; Roderick GK; Sun Y
    Curr Opin Insect Sci; 2020 Apr; 38():84-91. PubMed ID: 32240967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of allelopathy in agricultural pest management.
    Farooq M; Jabran K; Cheema ZA; Wahid A; Siddique KH
    Pest Manag Sci; 2011 May; 67(5):493-506. PubMed ID: 21254327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New pasture plants pose weed risk.
    Driscoll D; Catford J
    Nature; 2014 Dec; 516(7529):37. PubMed ID: 25471871
    [No Abstract]   [Full Text] [Related]  

  • 8. Predicting non-target impacts.
    Paynter Q; Paterson ID; Kwong RM
    Curr Opin Insect Sci; 2020 Apr; 38():79-83. PubMed ID: 32240966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing ecological interaction networks to support risk assessment in classical biological control of weeds.
    Ollivier M; Lesieur V; Raghu S; Martin JF
    Curr Opin Insect Sci; 2020 Apr; 38():40-47. PubMed ID: 32088650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly productive sown biodiverse pastures with low invasion risk.
    Proença V; Aguiar C; Domingos T
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):E1695. PubMed ID: 25805815
    [No Abstract]   [Full Text] [Related]  

  • 11. Female sex pheromone secreted by Carmenta mimosa (Lepidoptera: Sesiidae), a biological control agent for an invasive weed in Vietnam.
    Vang le V; Khanh CN; Shibasaki H; Ando T
    Biosci Biotechnol Biochem; 2012; 76(11):2153-5. PubMed ID: 23132583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reply to Proença et al.: Sown biodiverse pastures are not a universal solution to invasion risk.
    Driscoll DA; Catford JA; Barney JN; Hulme PE; Inderjit ; Martin TG; Pauchard A; Pyšek P; Richardson DM; Riley S; Visser V
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):E1696. PubMed ID: 25805814
    [No Abstract]   [Full Text] [Related]  

  • 13. Are exotic natural enemies an effective way of controlling invasive plants?
    Thomas MB; Reid AM
    Trends Ecol Evol; 2007 Sep; 22(9):447-53. PubMed ID: 17363106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the social and economic benefits of the biological control of invasive alien plants in natural ecosystems.
    van Wilgen BW; Raghu S; Sheppard AW; Schaffner U
    Curr Opin Insect Sci; 2020 Apr; 38():1-5. PubMed ID: 32070815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global review of target impact and direct nontarget effects of classical weed biological control.
    Hinz HL; Winston RL; Schwarzländer M
    Curr Opin Insect Sci; 2020 Apr; 38():48-54. PubMed ID: 32092697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of the Adventive Psyllid Arytainilla spartiophila (Hemiptera: Psyllidae) on Growth of the Invasive Weed Cytisus scoparius Under Controlled and Field Conditions in California.
    Hogg BN; Smith L; Daane KM
    Environ Entomol; 2016 Feb; 45(1):109-16. PubMed ID: 26628515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant disease management in organic farming systems.
    van Bruggen AH; Gamliel A; Finckh MR
    Pest Manag Sci; 2016 Jan; 72(1):30-44. PubMed ID: 26331771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weed risk assessment for aquatic plants: modification of a New Zealand system for the United States.
    Gordon DR; Gantz CA; Jerde CL; Chadderton WL; Keller RP; Champion PD
    PLoS One; 2012; 7(7):e40031. PubMed ID: 22808088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable effects of a generalist parasitoid on a biocontrol seed predator and its target weed.
    Swope SM; Satterthwaite WH
    Ecol Appl; 2012 Jan; 22(1):20-34. PubMed ID: 22471073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition pest by image-based transfer learning.
    Dawei W; Limiao D; Jiangong N; Jiyue G; Hongfei Z; Zhongzhi H
    J Sci Food Agric; 2019 Aug; 99(10):4524-4531. PubMed ID: 30868598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.