These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32328026)

  • 1. Novel NtA and LG1 Mutations in Agrin in a Single Patient Causes Congenital Myasthenic Syndrome.
    Wang A; Xiao Y; Huang P; Liu L; Xiong J; Li J; Mao D; Liu L
    Front Neurol; 2020; 11():239. PubMed ID: 32328026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Missense Variant in the AGRN Gene; Congenital Myasthenic Syndrome Presenting With Head Drop.
    Karakaya M; Ceyhan-Birsoy O; Beggs AH; Topaloglu H
    J Clin Neuromuscul Dis; 2017 Mar; 18(3):147-151. PubMed ID: 28221305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A valid mouse model of AGRIN-associated congenital myasthenic syndrome.
    Bogdanik LP; Burgess RW
    Hum Mol Genet; 2011 Dec; 20(23):4617-33. PubMed ID: 21890498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel LG1 Mutations in Agrin Causing Congenital Myasthenia Syndrome.
    Xia P; Xie F; Zhou ZJ; Lv W
    Intern Med; 2022 Mar; 61(6):887-890. PubMed ID: 34433720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel SEA and LG2 Agrin mutations causing congenital Myasthenic syndrome.
    Xi J; Yan C; Liu WW; Qiao K; Lin J; Tian X; Wu H; Lu J; Wong LJ; Beeson D; Zhao C
    Orphanet J Rare Dis; 2017 Dec; 12(1):182. PubMed ID: 29258548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy.
    Nicole S; Chaouch A; Torbergsen T; Bauché S; de Bruyckere E; Fontenille MJ; Horn MA; van Ghelue M; Løseth S; Issop Y; Cox D; Müller JS; Evangelista T; Stålberg E; Ioos C; Barois A; Brochier G; Sternberg D; Fournier E; Hantaï D; Abicht A; Dusl M; Laval SH; Griffin H; Eymard B; Lochmüller H
    Brain; 2014 Sep; 137(Pt 9):2429-43. PubMed ID: 24951643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Congenital myasthenic syndrome-associated agrin variants affect clustering of acetylcholine receptors in a domain-specific manner.
    Ohkawara B; Shen X; Selcen D; Nazim M; Bril V; Tarnopolsky MA; Brady L; Fukami S; Amato AA; Yis U; Ohno K; Engel AG
    JCI Insight; 2020 Apr; 5(7):. PubMed ID: 32271162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel AGRN Mutation Leads to Congenital Myasthenic Syndrome Only Affecting Limb-girdle Muscle.
    Zhang Y; Dai Y; Han JN; Chen ZH; Ling L; Pu CQ; Cui LY; Huang XS
    Chin Med J (Engl); 2017 Oct; 130(19):2279-2282. PubMed ID: 28937031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Severe congenital myasthenic syndromes caused by agrin mutations affecting secretion by motoneurons.
    Jacquier A; Risson V; Simonet T; Roussange F; Lacoste N; Ribault S; Carras J; Theuriet J; Girard E; Grosjean I; Le Goff L; Kröger S; Meltoranta J; Bauché S; Sternberg D; Fournier E; Kostera-Pruszczyk A; O'Connor E; Eymard B; Lochmüller H; Martinat C; Schaeffer L
    Acta Neuropathol; 2022 Oct; 144(4):707-731. PubMed ID: 35948834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New mutation in the β1 propeller domain of LRP4 responsible for congenital myasthenic syndrome associated with Cenani-Lenz syndrome.
    Masingue M; Cattaneo O; Wolff N; Buon C; Sternberg D; Euchparmakian M; Boex M; Behin A; Mamchaouhi K; Maisonobe T; Nougues MC; Isapof A; Fontaine B; Messéant J; Eymard B; Strochlic L; Bauché S
    Sci Rep; 2023 Aug; 13(1):14054. PubMed ID: 37640745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Null variants in AGRN cause lethal fetal akinesia deformation sequence.
    Geremek M; Dudarewicz L; Obersztyn E; Paczkowska M; Smyk M; Sobecka K; Nowakowska B
    Clin Genet; 2020 Apr; 97(4):634-638. PubMed ID: 31730230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the Acetylcholine Receptor Clustering Pathway Improves Neuromuscular Junction Structure and Muscle Strength in a Mouse Model of Congenital Myasthenic Syndrome.
    Spendiff S; Howarth R; McMacken G; Davey T; Quinlan K; O'Connor E; Slater C; Hettwer S; Mäder A; Roos A; Horvath R; Lochmüller H
    Front Mol Neurosci; 2020; 13():594220. PubMed ID: 33390901
    [No Abstract]   [Full Text] [Related]  

  • 13. Genes encoding agrin (AGRN) and neurotrypsin (PRSS12) are associated with muscle mass, strength and plasma C-terminal agrin fragment concentration.
    Pratt J; Whitton L; Ryan A; Juliusdottir T; Dolan J; Conroy J; Narici M; De Vito G; Boreham C
    Geroscience; 2023 Jun; 45(3):1289-1302. PubMed ID: 36609795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AGRN Gene Mutation Leads to Congenital Myasthenia Syndromes: A Pediatric Case Report and Literature Review.
    Gan S; Yang H; Xiao T; Pan Z; Wu L
    Neuropediatrics; 2020 Oct; 51(5):364-367. PubMed ID: 32221959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unfolding of Novel Independent Missense Mutations in VAMP2 and AGRN and Their Collective Role in Global Developmental Delay: A Case Report.
    Heidarpour N; Singh A; Caputo JM; Barbieri R; Pampana VS; Kamath VG; Kaur G
    Cureus; 2022 Aug; 14(8):e28464. PubMed ID: 36176870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic basal lamina-associated congenital myasthenic syndromes.
    Maselli RA; Arredondo J; Ferns MJ; Wollmann RL
    Ann N Y Acad Sci; 2012 Dec; 1275():36-48. PubMed ID: 23278576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy: Outcomes and Lessons Learned.
    Ghaoui R; Cooper ST; Lek M; Jones K; Corbett A; Reddel SW; Needham M; Liang C; Waddell LB; Nicholson G; O'Grady G; Kaur S; Ong R; Davis M; Sue CM; Laing NG; North KN; MacArthur DG; Clarke NF
    JAMA Neurol; 2015 Dec; 72(12):1424-32. PubMed ID: 26436962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pathophysiological characterization of congenital myasthenic syndromes: the example of mutations in the MUSK gene].
    Chevessier F; Faraut B; Ravel-Chapuis A; Richard P; Gaudon K; Bauché S; Prioleau C; Herbst R; Goillot E; Ioos C; Azulay JP; Attarian S; Leroy JP; Fournier E; Legay C; Schaeffer L; Koenig J; Fardeau M; Eymard B; Pouget J; Hantaï D
    J Soc Biol; 2005; 199(1):61-77. PubMed ID: 16114265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea.
    Bauché S; O'Regan S; Azuma Y; Laffargue F; McMacken G; Sternberg D; Brochier G; Buon C; Bouzidi N; Topf A; Lacène E; Remerand G; Beaufrere AM; Pebrel-Richard C; Thevenon J; El Chehadeh-Djebbar S; Faivre L; Duffourd Y; Ricci F; Mongini T; Fiorillo C; Astrea G; Burloiu CM; Butoianu N; Sandu C; Servais L; Bonne G; Nelson I; Desguerre I; Nougues MC; Bœuf B; Romero N; Laporte J; Boland A; Lechner D; Deleuze JF; Fontaine B; Strochlic L; Lochmuller H; Eymard B; Mayer M; Nicole S
    Am J Hum Genet; 2016 Sep; 99(3):753-761. PubMed ID: 27569547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new patient with congenital myasthenic syndrome type 20 due to compound heterozygous missense SLC5A7 variants suggests trends in genotype-phenotype correlation.
    Vlckova M; Prchalova D; Zimmermann P; Haberlova J; Bendova S; Moslerova V; Stranecky V; Sedlacek Z; Hancarova M
    Mol Genet Genomic Med; 2023 Jun; 11(6):e2154. PubMed ID: 36840359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.