BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32328458)

  • 1. Changing Technologies of RNA Sequencing and Their Applications in Clinical Oncology.
    Wang Y; Mashock M; Tong Z; Mu X; Chen H; Zhou X; Zhang H; Zhao G; Liu B; Li X
    Front Oncol; 2020; 10():447. PubMed ID: 32328458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From bulk, single-cell to spatial RNA sequencing.
    Li X; Wang CY
    Int J Oral Sci; 2021 Nov; 13(1):36. PubMed ID: 34782601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From whole bodies to single cells: A guide to transcriptomic approaches for ecology and evolutionary biology.
    Hoedjes KM; Grath S; Posnien N; Ritchie MG; Schlötterer C; Abbott JK; Almudi I; Coronado-Zamora M; Durmaz Mitchell E; Flatt T; Fricke C; Glaser-Schmitt A; González J; Holman L; Kankare M; Lenhart B; Orengo DJ; Snook RR; Yılmaz VM; Yusuf L
    Mol Ecol; 2024 Jun; ():e17382. PubMed ID: 38856653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Cell RNA Sequencing of Glioblastoma Cells.
    Sen R; Dolgalev I; Bayin NS; Heguy A; Tsirigos A; Placantonakis DG
    Methods Mol Biol; 2018; 1741():151-170. PubMed ID: 29392698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourth Generation of Next-Generation Sequencing Technologies: Promise and Consequences.
    Ke R; Mignardi M; Hauling T; Nilsson M
    Hum Mutat; 2016 Dec; 37(12):1363-1367. PubMed ID: 27406789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel omics technology driving translational research in precision oncology.
    Basu A; Budhraja A; Juwayria ; Abhilash D; Gupta I
    Adv Genet; 2021; 108():81-145. PubMed ID: 34844717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Expression Analysis of Quorum Sensing-Controlled Genes by RNAseq.
    Majerczyk CD
    Methods Mol Biol; 2018; 1673():177-192. PubMed ID: 29130173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streamlined Low-Input Transcriptomics through EASY-RNAseq.
    Zhou Y; Xu H; Wu H; Yu H; Zhou P; Qiu X; Zheng Z; Chen Q; Xu F; Li G; Zhou J; Cheng G; He W; Zou L; Wan Y
    J Mol Biol; 2019 Dec; 431(24):5075-5085. PubMed ID: 31491452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of commercially available small RNASeq library preparation kits using low input RNA.
    Yeri A; Courtright A; Danielson K; Hutchins E; Alsop E; Carlson E; Hsieh M; Ziegler O; Das A; Shah RV; Rozowsky J; Das S; Van Keuren-Jensen K
    BMC Genomics; 2018 May; 19(1):331. PubMed ID: 29728066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of TagSeq, a reliable low-cost alternative for RNAseq.
    Lohman BK; Weber JN; Bolnick DI
    Mol Ecol Resour; 2016 Nov; 16(6):1315-1321. PubMed ID: 27037501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key principles and clinical applications of "next-generation" DNA sequencing.
    Rizzo JM; Buck MJ
    Cancer Prev Res (Phila); 2012 Jul; 5(7):887-900. PubMed ID: 22617168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guide for library design and bias correction for large-scale transcriptome studies using highly multiplexed RNAseq methods.
    Katayama S; Skoog T; Söderhäll C; Einarsdottir E; Krjutškov K; Kere J
    BMC Bioinformatics; 2019 Aug; 20(1):418. PubMed ID: 31409293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration.
    Asp M; Bergenstråhle J; Lundeberg J
    Bioessays; 2020 Oct; 42(10):e1900221. PubMed ID: 32363691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of new sequencing technologies for transcriptome analysis.
    Morozova O; Hirst M; Marra MA
    Annu Rev Genomics Hum Genet; 2009; 10():135-51. PubMed ID: 19715439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell transcriptomics as a framework and roadmap for understanding the brain.
    Cembrowski MS
    J Neurosci Methods; 2019 Oct; 326():108353. PubMed ID: 31351971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Expression Analysis in Single-Cell Transcriptomics.
    Alessandrì L; Arigoni M; Calogero R
    Methods Mol Biol; 2019; 1979():425-432. PubMed ID: 31028652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Scalable Strand-Specific Protocol Enabling Full-Length Total RNA Sequencing From Single Cells.
    Haile S; Corbett RD; LeBlanc VG; Wei L; Pleasance S; Bilobram S; Nip KM; Brown K; Trinh E; Smith J; Trinh DL; Bala M; Chuah E; Coope RJN; Moore RA; Mungall AJ; Mungall KL; Zhao Y; Hirst M; Aparicio S; Birol I; Jones SJM; Marra MA
    Front Genet; 2021; 12():665888. PubMed ID: 34149808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying Smaller and Neglected Organisms in Modern Evolutionary Venomics Implementing RNASeq (Transcriptomics)-A Critical Guide.
    von Reumont BM
    Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 30012955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti.
    Roux B; Rodde N; Moreau S; Jardinaud MF; Gamas P
    Methods Mol Biol; 2018; 1830():191-224. PubMed ID: 30043372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology.
    Valdes-Mora F; Handler K; Law AMK; Salomon R; Oakes SR; Ormandy CJ; Gallego-Ortega D
    Front Immunol; 2018; 9():2582. PubMed ID: 30483257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.