These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 32328801)
1. Interdigitated aluminium and titanium sensors for assessing epithelial barrier functionality by electric cell-substrate impedance spectroscopy (ECIS). Schmiedinger T; Partel S; Lechleitner T; Eiter O; Hekl D; Kaseman S; Lukas P; Edlinger J; Lechner J; Seppi T Biomed Microdevices; 2020 Apr; 22(2):30. PubMed ID: 32328801 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity and Validation of Porous Membrane Electrical Cell Substrate Impedance Spectroscopy (PM-ECIS) for Measuring Endothelial Barrier Properties. Ugodnikov A; Chebotarev O; Persson H; Simmons CA ACS Biomater Sci Eng; 2024 Aug; 10(8):5327-5335. PubMed ID: 38943620 [TBL] [Abstract][Full Text] [Related]
3. Real-Time Impedance Monitoring of Epithelial Cultures with Inkjet-Printed Interdigitated-Electrode Sensors. Mojena-Medina D; Hubl M; Bäuscher M; Jorcano JL; Ngo HD; Acedo P Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33049961 [TBL] [Abstract][Full Text] [Related]
4. Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology. Martinez J; Montalibet A; McAdams E; Faivre M; Ferrigno R Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():813-816. PubMed ID: 29059996 [TBL] [Abstract][Full Text] [Related]
5. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Heileman K; Daoud J; Tabrizian M Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534 [TBL] [Abstract][Full Text] [Related]
6. The Influence of Electrode Design on Detecting the Effects of Ferric Ammonium Citrate (FAC) on Pre-Osteoblast through Electrical Cell-Substrate Impedance Sensing (ECIS). Zhang Z; Yuan X; Guo H; Shang P Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979534 [TBL] [Abstract][Full Text] [Related]
7. Concept for E.coli detection using interdigitated microelectrode impedance sensor. Settu K; Liu JT; Chen CJ; Tsai JZ; Chang SJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1712-5. PubMed ID: 24110036 [TBL] [Abstract][Full Text] [Related]
8. Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement. Pradhan R; Raisa SA; Kumar P; Kalkal A; Kumar N; Packirisamy G; Manhas S Biomed Microdevices; 2021 Jan; 23(1):9. PubMed ID: 33449205 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255 [TBL] [Abstract][Full Text] [Related]
10. A detailed model for high-frequency impedance characterization of ovarian cancer epithelial cell layer using ECIS electrodes. Rahman AR; Lo CM; Bhansali S IEEE Trans Biomed Eng; 2009 Feb; 56(2):485-92. PubMed ID: 19272881 [TBL] [Abstract][Full Text] [Related]
11. Electrical impedance characterization of cell growth on interdigitated microelectrode array. Lee GH; Pyun JC; Cho S J Nanosci Nanotechnol; 2014 Nov; 14(11):8342-6. PubMed ID: 25958525 [TBL] [Abstract][Full Text] [Related]
12. Real-Time Monitoring the Effect of Cytopathic Hypoxia on Retinal Pigment Epithelial Barrier Functionality Using Electric Cell-Substrate Impedance Sensing (ECIS) Biosensor Technology. Guerra MH; Yumnamcha T; Ebrahim AS; Berger EA; Singh LP; Ibrahim AS Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925448 [TBL] [Abstract][Full Text] [Related]
13. Optimization & Characterization of Interdigitated Electrodes for Microbial Growth Monitoring. Hosseini SN; Sarati Das P; Gagnon-Turcotte G; Bl-George P; Messaddeq Y; Corbeil J; Gosselin B Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1226-1229. PubMed ID: 34891508 [TBL] [Abstract][Full Text] [Related]
14. Porous Membrane Electrical Cell-Substrate Impedance Spectroscopy for Versatile Assessment of Biological Barriers In Vitro. Chebotarev O; Ugodnikov A; Simmons CA ACS Appl Bio Mater; 2024 Mar; 7(3):2000-2011. PubMed ID: 38447196 [TBL] [Abstract][Full Text] [Related]
15. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies. Alexander FA; Celestin M; Price DT; Nanjundan M; Bhansali S Analyst; 2013 Jul; 138(13):3728-34. PubMed ID: 23689543 [TBL] [Abstract][Full Text] [Related]
16. A Novel Impedance Biosensor for Measurement of Trans-Epithelial Resistance in Cells Cultured on Nanofiber Scaffolds. Schramm RA; Koslow MH; Nelson DA; Larsen M; Castracane J Biosensors (Basel); 2017 Aug; 7(3):. PubMed ID: 28858219 [TBL] [Abstract][Full Text] [Related]
17. Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level. Susloparova A; Koppenhöfer D; Law JK; Vu XT; Ingebrandt S Lab Chip; 2015 Feb; 15(3):668-79. PubMed ID: 25412224 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Brett CMA Molecules; 2022 Feb; 27(5):. PubMed ID: 35268599 [TBL] [Abstract][Full Text] [Related]
19. Dependence of Impedance Measurement Sensitivity of Cell Growth on Sensing Area of Circular Interdigitated Electrode. Park J; Hwang KS; Cho S J Nanosci Nanotechnol; 2015 Oct; 15(10):7886-90. PubMed ID: 26726434 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations. Korek EM; Teotia R; Herbig D; Brederlow R Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]