BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 32329076)

  • 1. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application.
    Kyme AZ; Aksoy M; Henry DL; Bammer R; Maclaren J
    Med Phys; 2020 Aug; 47(8):3321-3331. PubMed ID: 32329076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-encoded marker for optical prospective head motion correction in MRI.
    Forman C; Aksoy M; Hornegger J; Bammer R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):259-66. PubMed ID: 20879239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical tracking with two markers for robust prospective motion correction for brain imaging.
    Singh A; Zahneisen B; Keating B; Herbst M; Chang L; Zaitsev M; Ernst T
    MAGMA; 2015 Dec; 28(6):523-34. PubMed ID: 26121941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-encoded marker for optical prospective head motion correction in MRI.
    Forman C; Aksoy M; Hornegger J; Bammer R
    Med Image Anal; 2011 Oct; 15(5):708-19. PubMed ID: 21708477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system.
    Aksoy M; Maclaren J; Bammer R
    Magn Reson Imaging; 2017 Jun; 39():44-52. PubMed ID: 28137627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system.
    Qin L; van Gelderen P; Derbyshire JA; Jin F; Lee J; de Zwart JA; Tao Y; Duyn JH
    Magn Reson Med; 2009 Oct; 62(4):924-34. PubMed ID: 19526503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test Platform for Developing New Optical Position Tracking Technology towards Improved Head Motion Correction in Magnetic Resonance Imaging.
    Silic M; Tam F; Graham SJ
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective motion correction using inductively coupled wireless RF coils.
    Ooi MB; Aksoy M; Maclaren J; Watkins RD; Bammer R
    Magn Reson Med; 2013 Sep; 70(3):639-47. PubMed ID: 23813444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.
    Huang C; Ackerman JL; Petibon Y; Normandin MD; Brady TJ; El Fakhri G; Ouyang J
    Neuroimage; 2014 May; 91():129-37. PubMed ID: 24418501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The design and implementation of a motion correction scheme for neurological PET.
    Bloomfield PM; Spinks TJ; Reed J; Schnorr L; Westrip AM; Livieratos L; Fulton R; Jones T
    Phys Med Biol; 2003 Apr; 48(8):959-78. PubMed ID: 12741495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of calibration errors in prospective motion correction using external tracking.
    Zahneisen B; Keating B; Ernst T
    Magn Reson Med; 2014 Aug; 72(2):381-8. PubMed ID: 24123287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markerless high-frequency prospective motion correction for neuroanatomical MRI.
    Frost R; Wighton P; Karahanoğlu FI; Robertson RL; Grant PE; Fischl B; Tisdall MD; van der Kouwe A
    Magn Reson Med; 2019 Jul; 82(1):126-144. PubMed ID: 30821010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast noniterative calibration of an external motion tracking device.
    Zahneisen B; Lovell-Smith C; Herbst M; Zaitsev M; Speck O; Armstrong B; Ernst T
    Magn Reson Med; 2014 Apr; 71(4):1489-500. PubMed ID: 23788117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: phantom study.
    Huang C; Ackerman JL; Petibon Y; Brady TJ; El Fakhri G; Ouyang J
    Med Phys; 2014 Apr; 41(4):041910. PubMed ID: 24694141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective real-time head motion correction using inductively coupled wireless NMR probes.
    Sengupta S; Tadanki S; Gore JC; Welch EB
    Magn Reson Med; 2014 Oct; 72(4):971-85. PubMed ID: 24243810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective head motion compensation for MRI by updating the gradients and radio frequency during data acquisition.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):482-9. PubMed ID: 16685881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markerless motion tracking of awake animals in positron emission tomography.
    Kyme A; Se S; Meikle S; Angelis G; Ryder W; Popovic K; Yatigammana D; Fulton R
    IEEE Trans Med Imaging; 2014 Nov; 33(11):2180-90. PubMed ID: 24988591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of real-time motion tracking using cine MRI during MR-guided radiation therapy for abdominal targets.
    Keiper TD; Tai A; Chen X; Paulson E; Lathuilière F; Bériault S; Hébert F; Cooper DT; Lachaine M; Li XA
    Med Phys; 2020 Aug; 47(8):3554-3566. PubMed ID: 32402111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain PET motion correction using 3D face-shape model: the first clinical study.
    Iwao Y; Akamatsu G; Tashima H; Takahashi M; Yamaya T
    Ann Nucl Med; 2022 Oct; 36(10):904-912. PubMed ID: 35854178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T.
    Schulz J; Siegert T; Reimer E; Labadie C; Maclaren J; Herbst M; Zaitsev M; Turner R
    MAGMA; 2012 Dec; 25(6):443-53. PubMed ID: 22695771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.