These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 32329076)
1. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application. Kyme AZ; Aksoy M; Henry DL; Bammer R; Maclaren J Med Phys; 2020 Aug; 47(8):3321-3331. PubMed ID: 32329076 [TBL] [Abstract][Full Text] [Related]
2. Self-encoded marker for optical prospective head motion correction in MRI. Forman C; Aksoy M; Hornegger J; Bammer R Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):259-66. PubMed ID: 20879239 [TBL] [Abstract][Full Text] [Related]
3. Optical tracking with two markers for robust prospective motion correction for brain imaging. Singh A; Zahneisen B; Keating B; Herbst M; Chang L; Zaitsev M; Ernst T MAGMA; 2015 Dec; 28(6):523-34. PubMed ID: 26121941 [TBL] [Abstract][Full Text] [Related]
4. Self-encoded marker for optical prospective head motion correction in MRI. Forman C; Aksoy M; Hornegger J; Bammer R Med Image Anal; 2011 Oct; 15(5):708-19. PubMed ID: 21708477 [TBL] [Abstract][Full Text] [Related]
5. Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Aksoy M; Maclaren J; Bammer R Magn Reson Imaging; 2017 Jun; 39():44-52. PubMed ID: 28137627 [TBL] [Abstract][Full Text] [Related]
6. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Qin L; van Gelderen P; Derbyshire JA; Jin F; Lee J; de Zwart JA; Tao Y; Duyn JH Magn Reson Med; 2009 Oct; 62(4):924-34. PubMed ID: 19526503 [TBL] [Abstract][Full Text] [Related]
7. Test Platform for Developing New Optical Position Tracking Technology towards Improved Head Motion Correction in Magnetic Resonance Imaging. Silic M; Tam F; Graham SJ Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931521 [TBL] [Abstract][Full Text] [Related]
16. Prospective head motion compensation for MRI by updating the gradients and radio frequency during data acquisition. Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):482-9. PubMed ID: 16685881 [TBL] [Abstract][Full Text] [Related]
17. A modular motion compensation pipeline for prospective respiratory motion correction of multi-nuclear MR spectroscopy. Wampl S; Körner T; Meyerspeer M; Zaitsev M; Wolf M; Trattnig S; Wolzt M; Bogner W; Schmid AI Sci Rep; 2024 May; 14(1):10781. PubMed ID: 38734781 [TBL] [Abstract][Full Text] [Related]
18. Markerless motion tracking of awake animals in positron emission tomography. Kyme A; Se S; Meikle S; Angelis G; Ryder W; Popovic K; Yatigammana D; Fulton R IEEE Trans Med Imaging; 2014 Nov; 33(11):2180-90. PubMed ID: 24988591 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of real-time motion tracking using cine MRI during MR-guided radiation therapy for abdominal targets. Keiper TD; Tai A; Chen X; Paulson E; Lathuilière F; Bériault S; Hébert F; Cooper DT; Lachaine M; Li XA Med Phys; 2020 Aug; 47(8):3554-3566. PubMed ID: 32402111 [TBL] [Abstract][Full Text] [Related]
20. Brain PET motion correction using 3D face-shape model: the first clinical study. Iwao Y; Akamatsu G; Tashima H; Takahashi M; Yamaya T Ann Nucl Med; 2022 Oct; 36(10):904-912. PubMed ID: 35854178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]