BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32329141)

  • 21. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility.
    Fang X; Gomelsky M
    Mol Microbiol; 2010 Jun; 76(5):1295-305. PubMed ID: 20444091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa.
    Matsuyama BY; Krasteva PV; Baraquet C; Harwood CS; Sondermann H; Navarro MV
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):E209-18. PubMed ID: 26712005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose.
    Zorraquino V; GarcĂ­a B; Latasa C; Echeverz M; Toledo-Arana A; Valle J; Lasa I; Solano C
    J Bacteriol; 2013 Feb; 195(3):417-28. PubMed ID: 23161026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP.
    Trampari E; Stevenson CE; Little RH; Wilhelm T; Lawson DM; Malone JG
    J Biol Chem; 2015 Oct; 290(40):24470-83. PubMed ID: 26265469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PlzD modifies
    Chen T; Pu M; Subramanian S; Kearns D; Rowe-Magnus D
    mBio; 2023 Oct; 14(5):e0153623. PubMed ID: 37800901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Architecture and Assembly of the Bacterial Flagellar Motor Complex.
    Morimoto YV; Minamino T
    Subcell Biochem; 2021; 96():297-321. PubMed ID: 33252734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.
    Moreira RN; Dressaire C; Barahona S; Galego L; Kaever V; Jenal U; Arraiano CM
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Chaperone for the Stator Units of a Bacterial Flagellum.
    Ribardo DA; Kelley BR; Johnson JG; Hendrixson DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ.
    Baraquet C; Harwood CS
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18478-83. PubMed ID: 24167275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into the mechanism of c-di-GMP-bound YcgR regulating flagellar motility in
    Hou YJ; Yang WS; Hong Y; Zhang Y; Wang DC; Li DF
    J Biol Chem; 2020 Jan; 295(3):808-821. PubMed ID: 31836667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein.
    Yan XF; Xin L; Yen JT; Zeng Y; Jin S; Cheang QW; Fong RACY; Chiam KH; Liang ZX; Gao YG
    J Biol Chem; 2018 Jan; 293(1):100-111. PubMed ID: 29146598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A PilZ domain protein for chemotaxis adds another layer to c-di-GMP-mediated regulation of flagellar motility.
    Orr MW; Lee VT
    Sci Signal; 2016 Oct; 9(450):fs16. PubMed ID: 27811181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Second messenger-mediated adjustment of bacterial swimming velocity.
    Boehm A; Kaiser M; Li H; Spangler C; Kasper CA; Ackermann M; Kaever V; Sourjik V; Roth V; Jenal U
    Cell; 2010 Apr; 141(1):107-16. PubMed ID: 20303158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle.
    Davis NJ; Cohen Y; Sanselicio S; Fumeaux C; Ozaki S; Luciano J; Guerrero-Ferreira RC; Wright ER; Jenal U; Viollier PH
    Genes Dev; 2013 Sep; 27(18):2049-62. PubMed ID: 24065770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteria, Rev Your Engines: Stator Dynamics Regulate Flagellar Motility.
    Baker AE; O'Toole GA
    J Bacteriol; 2017 Jun; 199(12):. PubMed ID: 28320878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic Di-GMP Signaling Contributes to Pseudomonas aeruginosa-Mediated Catheter-Associated Urinary Tract Infection.
    Cole SJ; Lee VT
    J Bacteriol; 2016 Jan; 198(1):91-7. PubMed ID: 26195591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated control of surface adaptation by the bacterial flagellum.
    Hershey DM
    Curr Opin Microbiol; 2021 Jun; 61():1-7. PubMed ID: 33640633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1.
    Lo YL; Shen L; Chang CH; Bhuwan M; Chiu CH; Chang HY
    PLoS One; 2016; 11(5):e0155397. PubMed ID: 27175902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AmrZ Regulates Swarming Motility Through Cyclic di-GMP-Dependent Motility Inhibition and Controlling Pel Polysaccharide Production in
    Hou L; Debru A; Chen Q; Bao Q; Li K
    Front Microbiol; 2019; 10():1847. PubMed ID: 31474950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bacteriophytochrome Mediates Interplay between Light Sensing and the Second Messenger Cyclic Di-GMP to Control Social Behavior and Virulence.
    Verma RK; Biswas A; Kakkar A; Lomada SK; Pradhan BB; Chatterjee S
    Cell Rep; 2020 Sep; 32(13):108202. PubMed ID: 32997993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.