These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32329141)

  • 61. Cyclic-di-GMP binds to histidine kinase RavS to control RavS-RavR phosphotransfer and regulates the bacterial lifestyle transition between virulence and swimming.
    Cheng ST; Wang FF; Qian W
    PLoS Pathog; 2019 Aug; 15(8):e1007952. PubMed ID: 31408509
    [TBL] [Abstract][Full Text] [Related]  

  • 62. c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility.
    Kulasekara BR; Kamischke C; Kulasekara HD; Christen M; Wiggins PA; Miller SI
    Elife; 2013 Dec; 2():e01402. PubMed ID: 24347546
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pleiotropic Effects of c-di-GMP Content in
    Wang T; Cai Z; Shao X; Zhang W; Xie Y; Zhang Y; Hua C; Schuster SC; Yang L; Deng X
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30850427
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flagella-Driven Motility of Bacteria.
    Nakamura S; Minamino T
    Biomolecules; 2019 Jul; 9(7):. PubMed ID: 31337100
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Role of Cyclic Di-GMP and Exopolysaccharide in Type IV Pilus Dynamics.
    Ribbe J; Baker AE; Euler S; O'Toole GA; Maier B
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167523
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanosensing of shear by
    Rodesney CA; Roman B; Dhamani N; Cooley BJ; Katira P; Touhami A; Gordon VD
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5906-5911. PubMed ID: 28533383
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamics in the Dual Fuel Flagellar Motor of Shewanella oneidensis MR-1.
    Brenzinger S; Thormann KM
    Methods Mol Biol; 2017; 1593():285-295. PubMed ID: 28389963
    [TBL] [Abstract][Full Text] [Related]  

  • 68. ScrG, a GGDEF-EAL protein, participates in regulating swarming and sticking in Vibrio parahaemolyticus.
    Kim YK; McCarter LL
    J Bacteriol; 2007 Jun; 189(11):4094-107. PubMed ID: 17400744
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Cyclic AMP-Vfr Signaling Pathway in Pseudomonas aeruginosa Is Inhibited by Cyclic Di-GMP.
    Almblad H; Harrison JJ; Rybtke M; Groizeleau J; Givskov M; Parsek MR; Tolker-Nielsen T
    J Bacteriol; 2015 Jul; 197(13):2190-200. PubMed ID: 25897033
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Regulation of c-di-GMP metabolism in biofilms.
    Jonas K; Melefors O; Römling U
    Future Microbiol; 2009 Apr; 4(3):341-58. PubMed ID: 19327118
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Surface-Induced Asymmetric Program Promotes Tissue Colonization by Pseudomonas aeruginosa.
    Laventie BJ; Sangermani M; Estermann F; Manfredi P; Planes R; Hug I; Jaeger T; Meunier E; Broz P; Jenal U
    Cell Host Microbe; 2019 Jan; 25(1):140-152.e6. PubMed ID: 30581112
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Crystallization and preliminary X-ray analysis of the flagellar motor `brake' molecule YcgR with c-di-GMP from Escherichia coli.
    Hou Y; Li de F; Wang da C
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jun; 69(Pt 6):663-5. PubMed ID: 23722848
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A c-di-GMP-Modulating Protein Regulates Swimming Motility of
    Kumar B; Sorensen JL; Cardona ST
    Front Cell Infect Microbiol; 2018; 8():56. PubMed ID: 29541628
    [No Abstract]   [Full Text] [Related]  

  • 74. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor.
    Nord AL; Gachon E; Perez-Carrasco R; Nirody JA; Barducci A; Berry RM; Pedaci F
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12952-12957. PubMed ID: 29183968
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors.
    Kuchma SL; Ballok AE; Merritt JH; Hammond JH; Lu W; Rabinowitz JD; O'Toole GA
    J Bacteriol; 2010 Jun; 192(12):2950-64. PubMed ID: 20233936
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new player at the flagellar motor: FliL controls both motor output and bias.
    Partridge JD; Nieto V; Harshey RM
    mBio; 2015 Feb; 6(2):e02367. PubMed ID: 25714720
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modulation of flagellar rotation in surface-attached bacteria: A pathway for rapid surface-sensing after flagellar attachment.
    Schniederberend M; Williams JF; Shine E; Shen C; Jain R; Emonet T; Kazmierczak BI
    PLoS Pathog; 2019 Nov; 15(11):e1008149. PubMed ID: 31682637
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors.
    Fukuoka H; Wada T; Kojima S; Ishijima A; Homma M
    Mol Microbiol; 2009 Feb; 71(4):825-35. PubMed ID: 19183284
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa.
    Soscia C; Hachani A; Bernadac A; Filloux A; Bleves S
    J Bacteriol; 2007 Apr; 189(8):3124-32. PubMed ID: 17307856
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32.
    Bubendorfer S; Held S; Windel N; Paulick A; Klingl A; Thormann KM
    Mol Microbiol; 2012 Jan; 83(2):335-50. PubMed ID: 22151089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.