These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 32329366)
1. Accounting for Latent Covariates in Average Effects from Count Regressions. Kiefer C; Mayer A Multivariate Behav Res; 2021; 56(4):579-594. PubMed ID: 32329366 [TBL] [Abstract][Full Text] [Related]
2. Interactions between latent variables in count regression models. Kiefer C; Wilker S; Mayer A Behav Res Methods; 2024 Dec; 56(8):8932-8954. PubMed ID: 39187739 [TBL] [Abstract][Full Text] [Related]
3. When does measurement error in covariates impact causal effect estimates? Analytic derivations of different scenarios and an empirical illustration. Sengewald MA; Steiner PM; Pohl S Br J Math Stat Psychol; 2019 May; 72(2):244-270. PubMed ID: 30345554 [TBL] [Abstract][Full Text] [Related]
4. Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates. Kiefer C; Mayer A Psychometrika; 2019 Jun; 84(2):422-446. PubMed ID: 30607660 [TBL] [Abstract][Full Text] [Related]
5. The EffectLiteR Approach for Analyzing Average and Conditional Effects. Mayer A; Dietzfelbinger L; Rosseel Y; Steyer R Multivariate Behav Res; 2016; 51(2-3):374-91. PubMed ID: 27249048 [TBL] [Abstract][Full Text] [Related]
6. Treatment effects on count outcomes with non-normal covariates. Kiefer C; Mayer A Br J Math Stat Psychol; 2021 Nov; 74(3):513-540. PubMed ID: 33949681 [TBL] [Abstract][Full Text] [Related]
7. R-squared change in structural equation models with latent variables and missing data. Hayes T Behav Res Methods; 2021 Oct; 53(5):2127-2157. PubMed ID: 33782902 [TBL] [Abstract][Full Text] [Related]
8. Relating latent class membership to external variables: An overview. Bakk Z; Kuha J Br J Math Stat Psychol; 2021 May; 74(2):340-362. PubMed ID: 33200411 [TBL] [Abstract][Full Text] [Related]
9. Causal effect analysis in nonrandomized data with latent variables and categorical indicators: The implementation and benefits of EffectLiteR. Sengewald MA; Mayer A Psychol Methods; 2024 Apr; 29(2):287-307. PubMed ID: 35549317 [TBL] [Abstract][Full Text] [Related]
10. Structural Equation Modeling of Social Networks: Specification, Estimation, and Application. Liu H; Jin IH; Zhang Z Multivariate Behav Res; 2018; 53(5):714-730. PubMed ID: 30477339 [TBL] [Abstract][Full Text] [Related]
11. The Comparison of Latent Variable Propensity Score Models to Traditional Propensity Score Models under Conditions of Covariate Unreliability. Whittaker TA Multivariate Behav Res; 2020; 55(4):625-646. PubMed ID: 31530179 [TBL] [Abstract][Full Text] [Related]
12. Analyzing average and conditional effects with multigroup multilevel structural equation models. Mayer A; Nagengast B; Fletcher J; Steyer R Front Psychol; 2014; 5():304. PubMed ID: 24795668 [TBL] [Abstract][Full Text] [Related]
13. Generalized Network Psychometrics: Combining Network and Latent Variable Models. Epskamp S; Rhemtulla M; Borsboom D Psychometrika; 2017 Dec; 82(4):904-927. PubMed ID: 28290111 [TBL] [Abstract][Full Text] [Related]
14. Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates. Rockwood NJ Psychometrika; 2020 Jun; 85(2):275-300. PubMed ID: 32303976 [TBL] [Abstract][Full Text] [Related]
15. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models. Kyle RP; Moodie EE; Klein MB; Abrahamowicz M Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840 [TBL] [Abstract][Full Text] [Related]
16. Bayesian Analysis of Structural Equation Models With Nonlinear Covariates and Latent Variables. Song XY; Lee SY Multivariate Behav Res; 2006 Sep; 41(3):337-65. PubMed ID: 26750339 [TBL] [Abstract][Full Text] [Related]
17. Extending mixture of experts model to investigate heterogeneity of trajectories: When, where, and how to add which covariates. Liu J; Perera RA Psychol Methods; 2023 Feb; 28(1):152-178. PubMed ID: 35617227 [TBL] [Abstract][Full Text] [Related]
18. Treating random effects as observed versus latent predictors: The bias-variance tradeoff in small samples. Liu S; Rhemtulla M Br J Math Stat Psychol; 2022 Feb; 75(1):158-181. PubMed ID: 34632565 [TBL] [Abstract][Full Text] [Related]
19. Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods. Merkle EC; Furr D; Rabe-Hesketh S Psychometrika; 2019 Sep; 84(3):802-829. PubMed ID: 31297664 [TBL] [Abstract][Full Text] [Related]
20. Compensation and Amplification of Attenuation Bias in Causal Effect Estimates. Sengewald MA; Pohl S Psychometrika; 2019 Jun; 84(2):589-610. PubMed ID: 30915587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]