These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 32329546)
21. A universal strategy towards high-energy aqueous multivalent-ion batteries. Tang X; Zhou D; Zhang B; Wang S; Li P; Liu H; Guo X; Jaumaux P; Gao X; Fu Y; Wang C; Wang C; Wang G Nat Commun; 2021 May; 12(1):2857. PubMed ID: 34001901 [TBL] [Abstract][Full Text] [Related]
22. The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. Xu D; Liang M; Qi S; Sun W; Lv LP; Du FH; Wang B; Chen S; Wang Y; Yu Y ACS Nano; 2021 Jan; 15(1):47-80. PubMed ID: 33382596 [TBL] [Abstract][Full Text] [Related]
23. Recent Development of CO Xie J; Wang Y Acc Chem Res; 2019 Jun; 52(6):1721-1729. PubMed ID: 31120728 [TBL] [Abstract][Full Text] [Related]
24. Bi-Based Electrode Materials for Alkali Metal-Ion Batteries. Wang A; Hong W; Yang L; Tian Y; Qiu X; Zou G; Hou H; Ji X Small; 2020 Dec; 16(48):e2004022. PubMed ID: 33155416 [TBL] [Abstract][Full Text] [Related]
25. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Feng R; Zhang X; Murugesan V; Hollas A; Chen Y; Shao Y; Walter E; Wellala NPN; Yan L; Rosso KM; Wang W Science; 2021 May; 372(6544):836-840. PubMed ID: 34016776 [TBL] [Abstract][Full Text] [Related]
26. Electrolytes in Organic Batteries. Li M; Hicks RP; Chen Z; Luo C; Guo J; Wang C; Xu Y Chem Rev; 2023 Feb; ():. PubMed ID: 36735935 [TBL] [Abstract][Full Text] [Related]
27. Organic electrode materials and carbon/small-sulfur composites for affordable, lightweight and sustainable batteries. Luo C Chem Commun (Camb); 2023 Aug; 59(65):9803-9817. PubMed ID: 37475598 [TBL] [Abstract][Full Text] [Related]
28. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review. Fischer P; Mazúr P; Krakowiak J Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875 [TBL] [Abstract][Full Text] [Related]
29. High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes. Lu K; Zhang H; Gao S; Cheng Y; Ma H Nanoscale; 2018 Nov; 10(44):20754-20760. PubMed ID: 30402629 [TBL] [Abstract][Full Text] [Related]
30. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Wang C; Fu K; Kammampata SP; McOwen DW; Samson AJ; Zhang L; Hitz GT; Nolan AM; Wachsman ED; Mo Y; Thangadurai V; Hu L Chem Rev; 2020 May; 120(10):4257-4300. PubMed ID: 32271022 [TBL] [Abstract][Full Text] [Related]
31. A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids. Chen R; Bresser D; Saraf M; Gerlach P; Balducci A; Kunz S; Schröder D; Passerini S; Chen J ChemSusChem; 2020 May; 13(9):2205-2219. PubMed ID: 31995281 [TBL] [Abstract][Full Text] [Related]
32. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries. Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096 [TBL] [Abstract][Full Text] [Related]
33. Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na Zhang H; Jeong S; Qin B; Vieira Carvalho D; Buchholz D; Passerini S ChemSusChem; 2018 Apr; 11(8):1382-1389. PubMed ID: 29468824 [TBL] [Abstract][Full Text] [Related]
34. Electrolytes and Interphases in Potassium Ion Batteries. Zhou M; Bai P; Ji X; Yang J; Wang C; Xu Y Adv Mater; 2021 Feb; 33(7):e2003741. PubMed ID: 33410168 [TBL] [Abstract][Full Text] [Related]
35. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices. Xu X; Yan M; Tian X; Yang C; Shi M; Wei Q; Xu L; Mai L Nano Lett; 2015 Jun; 15(6):3879-84. PubMed ID: 25989463 [TBL] [Abstract][Full Text] [Related]
36. Recent Progress of the Cathode Material Design for Aqueous Zn-Organic Batteries. Bian S; Yang Y; Liu S; Ye F; Tang H; Wu Y; Hu L Chemistry; 2024 Mar; 30(13):e202303917. PubMed ID: 38093171 [TBL] [Abstract][Full Text] [Related]
37. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Wang ZL; Xu D; Xu JJ; Zhang XB Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780 [TBL] [Abstract][Full Text] [Related]
38. Functional materials for aqueous redox flow batteries: merits and applications. Zhu F; Guo W; Fu Y Chem Soc Rev; 2023 Nov; 52(23):8410-8446. PubMed ID: 37947236 [TBL] [Abstract][Full Text] [Related]
39. The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries. Ye C; Li H; Chen Y; Hao J; Liu J; Shan J; Qiao SZ Nat Commun; 2024 Jun; 15(1):4797. PubMed ID: 38839870 [TBL] [Abstract][Full Text] [Related]
40. Research Development on K-Ion Batteries. Hosaka T; Kubota K; Hameed AS; Komaba S Chem Rev; 2020 Jul; 120(14):6358-6466. PubMed ID: 31939297 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]