BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32329663)

  • 1. A New Role for the Aldosterone/Mineralocorticoid Receptor Pathway in the Development of Mitral Valve Prolapse.
    Ibarrola J; Garcia-Peña A; Matilla L; Bonnard B; Sádaba R; Arrieta V; Alvarez V; Fernández-Celis A; Gainza A; Navarro A; Alvarez de la Rosa D; Rossignol P; Jaisser F; López-Andrés N
    Circ Res; 2020 Jul; 127(3):e80-e93. PubMed ID: 32329663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial Effects of Mineralocorticoid Receptor Antagonism on Myocardial Fibrosis in an Experimental Model of the Myxomatous Degeneration of the Mitral Valve.
    Ibarrola J; Garaikoetxea M; Garcia-Peña A; Matilla L; Jover E; Bonnard B; Cuesta M; Fernández-Celis A; Jaisser F; López-Andrés N
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32731636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human myxomatous mitral valve prolapse: role of bone morphogenetic protein 4 in valvular interstitial cell activation.
    Sainger R; Grau JB; Branchetti E; Poggio P; Seefried WF; Field BC; Acker MA; Gorman RC; Gorman JH; Hargrove CW; Bavaria JE; Ferrari G
    J Cell Physiol; 2012 Jun; 227(6):2595-604. PubMed ID: 22105615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex-Related Signaling of Aldosterone/Mineralocorticoid Receptor Pathway in Calcific Aortic Stenosis.
    Matilla L; Jover E; Garaikoetxea M; Martín-Nuñez E; Arrieta V; García-Peña A; Navarro A; Fernández-Celis A; Gainza A; Álvarez V; Álvarez de la Rosa D; Sádaba R; Jaisser F; López-Andrés N
    Hypertension; 2022 Aug; 79(8):1724-1737. PubMed ID: 35549329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biglycan Is a Novel Mineralocorticoid Receptor Target Involved in Aldosterone/Salt-Induced Glomerular Injury.
    Nakamura T; Bonnard B; Palacios-Ramirez R; Fernández-Celis A; Jaisser F; López-Andrés N
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitral valve endothelial cells secrete osteoprotegerin during endothelial mesenchymal transition.
    Songia P; Branchetti E; Parolari A; Myasoedova V; Ferrari G; Alamanni F; Tremoli E; Poggio P
    J Mol Cell Cardiol; 2016 Sep; 98():48-57. PubMed ID: 27338002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-induced remodelling of the mitral valve: a model for leaflet thickening and superimposed tissue formation in mitral valve disease.
    Kruithof BPT; Paardekooper L; Hiemstra YL; Goumans MJ; Palmen M; Delgado V; Klautz RJM; Ajmone Marsan N
    Cardiovasc Res; 2020 Apr; 116(5):931-943. PubMed ID: 31497851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular pathology of mitral valve prolapse.
    Prunotto M; Caimmi PP; Bongiovanni M
    Cardiovasc Pathol; 2010; 19(4):e113-7. PubMed ID: 19375355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tenascin C promotes valvular remodeling in two large animal models of ischemic mitral regurgitation.
    Hamza O; Kiss A; Kramer AM; Trojanek S; Abraham D; Acar E; Nagel F; Tretter VE; Kitzwögerer M; Podesser BK
    Basic Res Cardiol; 2020 Dec; 115(6):76. PubMed ID: 33258993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for cardiotrophin-1 in myocardial remodeling induced by aldosterone.
    López-Andrés N; Martin-Fernandez B; Rossignol P; Zannad F; Lahera V; Fortuno MA; Cachofeiro V; Díez J
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2372-82. PubMed ID: 21926338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular magnetic resonance characterization of mitral valve prolapse.
    Han Y; Peters DC; Salton CJ; Bzymek D; Nezafat R; Goddu B; Kissinger KV; Zimetbaum PJ; Manning WJ; Yeon SB
    JACC Cardiovasc Imaging; 2008 May; 1(3):294-303. PubMed ID: 19356441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative mitral regurgitation.
    Driesbaugh KH; Branchetti E; Grau JB; Keeney SJ; Glass K; Oyama MA; Rioux N; Ayoub S; Sacks MS; Quackenbush J; Levy RJ; Ferrari G
    J Mol Cell Cardiol; 2018 Feb; 115():94-103. PubMed ID: 29291394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease.
    Prakash S; Borreguero LJJ; Sylva M; Flores Ruiz L; Rezai F; Gunst QD; de la Pompa JL; Ruijter JM; van den Hoff MJB
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):e116-e130. PubMed ID: 28705792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis.
    Neri T; Hiriart E; van Vliet PP; Faure E; Norris RA; Farhat B; Jagla B; Lefrancois J; Sugi Y; Moore-Morris T; Zaffran S; Faustino RS; Zambon AC; Desvignes JP; Salgado D; Levine RA; de la Pompa JL; Terzic A; Evans SM; Markwald R; Pucéat M
    Nat Commun; 2019 Apr; 10(1):1929. PubMed ID: 31028265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome.
    Ng CM; Cheng A; Myers LA; Martinez-Murillo F; Jie C; Bedja D; Gabrielson KL; Hausladen JM; Mecham RP; Judge DP; Dietz HC
    J Clin Invest; 2004 Dec; 114(11):1586-92. PubMed ID: 15546004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myxoid heart disease: an assessment of extravalvular cardiac pathology in severe mitral valve prolapse.
    Morales AR; Romanelli R; Boucek RJ; Tate LG; Alvarez RT; Davis JT
    Hum Pathol; 1992 Feb; 23(2):129-37. PubMed ID: 1740297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data.
    Hulin A; Deroanne C; Lambert C; Defraigne JO; Nusgens B; Radermecker M; Colige A
    Cardiovasc Pathol; 2013; 22(4):245-50. PubMed ID: 23261354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the Role of the miR-145-KLF4-αSMA Axis in Mitral Valvular Interstitial Cell Activation in Myxomatous Mitral Valve Prolapse Using the Canine Model.
    Yang VK; Moyer N; Zhou R; Carnevale SZ; Meola DM; Robinson SR; Li G; Das S
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Histopathological Analysis of Mitral Valves in Barlow Disease and Fibroelastic Deficiency.
    Hjortnaes J; Keegan J; Bruneval P; Schwartz E; Schoen FJ; Carpentier A; Levine RA; Hagège A; Aikawa E
    Semin Thorac Cardiovasc Surg; 2016 Winter; 28(4):757-767. PubMed ID: 28417861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers.
    Geirsson A; Singh M; Ali R; Abbas H; Li W; Sanchez JA; Hashim S; Tellides G
    Circulation; 2012 Sep; 126(11 Suppl 1):S189-97. PubMed ID: 22965982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.