These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 32329904)

  • 21.
    Li P; Wang X; Xu C; Liu C; Zheng C; Fulham MJ; Feng D; Wang L; Song S; Huang G
    Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1116-1126. PubMed ID: 31982990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CT radiomic features of photodynamic priming in clinical pancreatic adenocarcinoma treatment.
    Vincent P; Maeder ME; Hunt B; Linn B; Mangels-Dick T; Hasan T; Wang KK; Pogue BW
    Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34261044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noncontrast Magnetic Resonance Radiomics and Multilayer Perceptron Network Classifier: An approach for Predicting Fibroblast Activation Protein Expression in Patients With Pancreatic Ductal Adenocarcinoma.
    Meng Y; Zhang H; Li Q; Xing P; Liu F; Cao K; Fang X; Li J; Yu J; Feng X; Ma C; Wang L; Jiang H; Lu J; Bian Y; Shao C
    J Magn Reson Imaging; 2021 Nov; 54(5):1432-1443. PubMed ID: 33890347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of SBRT response in liver cancer by combining original and delta cone-beam CT radiomics: a pilot study.
    Yang P; Shan J; Ge X; Zhou Q; Ding M; Niu T; Du J
    Phys Eng Sci Med; 2024 Mar; 47(1):295-307. PubMed ID: 38165634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation of invasive ductal and lobular carcinoma of the breast using MRI radiomic features: a pilot study.
    Maiti S; Nayak S; Hebbar KD; Pendem S
    F1000Res; 2024; 13():91. PubMed ID: 38571894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction Breast Molecular Typing of Invasive Ductal Carcinoma Based on Dynamic Contrast Enhancement Magnetic Resonance Imaging Radiomics Characteristics: A Feasibility Study.
    Xu A; Chu X; Zhang S; Zheng J; Shi D; Lv S; Li F; Weng X
    Front Oncol; 2022; 12():799232. PubMed ID: 35664741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiomic analysis of planning computed tomograms for predicting radiation-induced lung injury and outcome in lung cancer patients treated with robotic stereotactic body radiation therapy.
    Bousabarah K; Temming S; Hoevels M; Borggrefe J; Baus WW; Ruess D; Visser-Vandewalle V; Ruge M; Kocher M; Treuer H
    Strahlenther Onkol; 2019 Sep; 195(9):830-842. PubMed ID: 30874846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pretreatment Prediction of Adaptive Radiation Therapy Eligibility Using MRI-Based Radiomics for Advanced Nasopharyngeal Carcinoma Patients.
    Yu TT; Lam SK; To LH; Tse KY; Cheng NY; Fan YN; Lo CL; Or KW; Chan ML; Hui KC; Chan FC; Hui WM; Ngai LK; Lee FK; Au KH; Yip CW; Zhang Y; Cai J
    Front Oncol; 2019; 9():1050. PubMed ID: 31681588
    [No Abstract]   [Full Text] [Related]  

  • 29. Pretreatment
    Dissaux G; Visvikis D; Da-Ano R; Pradier O; Chajon E; Barillot I; Duvergé L; Masson I; Abgral R; Santiago Ribeiro MJ; Devillers A; Pallardy A; Fleury V; Mahé MA; De Crevoisier R; Hatt M; Schick U
    J Nucl Med; 2020 Jun; 61(6):814-820. PubMed ID: 31732678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CT radiomic predictors of local relapse after SBRT for lung oligometastases from colorectal cancer: a single institute pilot study.
    Fodor A; Mori M; Tummineri R; Broggi S; Deantoni CL; Mangili P; Baroni S; Villa SL; Dell'Oca I; Del Vecchio A; Fiorino C; Di Muzio N
    Strahlenther Onkol; 2023 May; 199(5):477-484. PubMed ID: 36580087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H; Mofid B; Shiri I; Razzaghdoust A; Saadipoor A; Mahdavi A; Galandooz HM; Mahdavi SR
    Radiol Med; 2019 Jun; 124(6):555-567. PubMed ID: 30607868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technical note: On the development of an outcome-driven frequency filter for improving radiomics-based modeling of human papillomavirus (HPV) in patients with oropharyngeal squamous cell carcinoma.
    Bagher-Ebadian H; Zhu S; Siddiqui F; Lu M; Movsas B; Chetty IJ
    Med Phys; 2021 Nov; 48(11):7552-7562. PubMed ID: 34390003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images.
    Zhang Z; Yang J; Ho A; Jiang W; Logan J; Wang X; Brown PD; McGovern SL; Guha-Thakurta N; Ferguson SD; Fave X; Zhang L; Mackin D; Court LE; Li J
    Eur Radiol; 2018 Jun; 28(6):2255-2263. PubMed ID: 29178031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CT radiomic features for predicting resectability of oesophageal squamous cell carcinoma as given by feature analysis: a case control study.
    Ou J; Li R; Zeng R; Wu CQ; Chen Y; Chen TW; Zhang XM; Wu L; Jiang Y; Yang JQ; Cao JM; Tang S; Tang MJ; Hu J
    Cancer Imaging; 2019 Oct; 19(1):66. PubMed ID: 31619297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy.
    Avanzo M; Gagliardi V; Stancanello J; Blanck O; Pirrone G; El Naqa I; Revelant A; Sartor G
    Med Phys; 2021 Oct; 48(10):6257-6269. PubMed ID: 34415574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: a feasibility study.
    Filograna L; Lenkowicz J; Cellini F; Dinapoli N; Manfrida S; Magarelli N; Leone A; Colosimo C; Valentini V
    Radiol Med; 2019 Jan; 124(1):50-57. PubMed ID: 30191445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT.
    Huynh E; Coroller TP; Narayan V; Agrawal V; Romano J; Franco I; Parmar C; Hou Y; Mak RH; Aerts HJ
    PLoS One; 2017; 12(1):e0169172. PubMed ID: 28046060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utility of Radiomics for Predicting Patient Survival in Hepatocellular Carcinoma With Portal Vein Tumor Thrombosis Treated With Stereotactic Body Radiotherapy.
    Wu K; Shui Y; Sun W; Lin S; Pang H
    Front Oncol; 2020; 10():569435. PubMed ID: 33178598
    [No Abstract]   [Full Text] [Related]  

  • 39. Identifying pathological subtypes of non-small-cell lung cancer by using the radiomic features of
    Sha X; Gong G; Qiu Q; Duan J; Li D; Yin Y
    Transl Cancer Res; 2019 Sep; 8(5):1741-1749. PubMed ID: 35116924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Pathological Response to Preoperative Chemotherapy in Pancreatic Ductal Adenocarcinoma Using Post-Chemotherapy Computed Tomography Radiomics.
    Ikuta S; Aihara T; Nakajima T; Yamanaka N
    Cureus; 2024 Jan; 16(1):e52193. PubMed ID: 38348011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.