These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 32329947)

  • 1. Chemical Modification of Reducing End-Groups in Cellulose Nanocrystals.
    Heise K; Delepierre G; King AWT; Kostiainen MA; Zoppe J; Weder C; Kontturi E
    Angew Chem Int Ed Engl; 2021 Jan; 60(1):66-87. PubMed ID: 32329947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contemporary nanocellulose-composites: A new paradigm for sensing applications.
    Kumar S; Ngasainao MR; Sharma D; Sengar M; Gahlot APS; Shukla S; Kumari P
    Carbohydr Polym; 2022 Dec; 298():120052. PubMed ID: 36241259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Biomedical Application of Nanocellulose-Based Materials: A Review.
    Yuan Q; Bian J; Ma MG
    Curr Med Chem; 2021; 28(40):8275-8295. PubMed ID: 33256574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges in Synthesis and Analysis of Asymmetrically Grafted Cellulose Nanocrystals via Atom Transfer Radical Polymerization.
    Delepierre G; Heise K; Malinen K; Koso T; Pitkänen L; Cranston ED; Kilpeläinen I; Kostiainen MA; Kontturi E; Weder C; Zoppe JO; King AWT
    Biomacromolecules; 2021 Jun; 22(6):2702-2717. PubMed ID: 34060815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building Blocks and Their Assembly into Asymmetric Structures.
    Wang Q; Zhou R; Sun J; Liu J; Zhu Q
    ACS Nano; 2022 Sep; 16(9):13468-13491. PubMed ID: 36075202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose: From Fundamentals to Advanced Applications.
    Trache D; Tarchoun AF; Derradji M; Hamidon TS; Masruchin N; Brosse N; Hussin MH
    Front Chem; 2020; 8():392. PubMed ID: 32435633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization.
    Rana AK; Frollini E; Thakur VK
    Int J Biol Macromol; 2021 Jul; 182():1554-1581. PubMed ID: 34029581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges.
    Tao H; Lavoine N; Jiang F; Tang J; Lin N
    Nanoscale Horiz; 2020 Mar; 5(4):607-627. PubMed ID: 32073114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of cellulose nanocrystals.
    Eyley S; Thielemans W
    Nanoscale; 2014 Jul; 6(14):7764-79. PubMed ID: 24937092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Star-like Supramolecular Complexes of Reducing-End-Functionalized Cellulose Nanocrystals.
    Villares A; Moreau C; Cathala B
    ACS Omega; 2018 Nov; 3(11):16203-16211. PubMed ID: 31458256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review.
    Noremylia MB; Hassan MZ; Ismail Z
    Int J Biol Macromol; 2022 May; 206():954-976. PubMed ID: 35304199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid Crystalline Properties of Symmetric and Asymmetric End-Grafted Cellulose Nanocrystals.
    Delepierre G; Traeger H; Adamcik J; Cranston ED; Weder C; Zoppe JO
    Biomacromolecules; 2021 Aug; 22(8):3552-3564. PubMed ID: 34297531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials.
    Kim JH; Lee D; Lee YH; Chen W; Lee SY
    Adv Mater; 2019 May; 31(20):e1804826. PubMed ID: 30561780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native Structure of the Plant Cell Wall Utilized for Top-Down Assembly of Aligned Cellulose Nanocrystals into Micrometer-Sized Nanoporous Particles.
    Spiliopoulos P; Solala I; Pääkkönen T; Seitsonen J; van Bochove B; Seppälä JV; Kontturi E
    Macromol Rapid Commun; 2020 Aug; 41(15):e2000201. PubMed ID: 32613701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication.
    De France K; Zeng Z; Wu T; Nyström G
    Adv Mater; 2021 Jul; 33(28):e2000657. PubMed ID: 32267033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of the Surface Modification of Cellulose and Nanocellulose Using Aliphatic and Aromatic Mono- and Di-Isocyanates.
    Abushammala H; Mao J
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31370227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in nanoengineering cellulose for cargo delivery.
    Sheikhi A; Hayashi J; Eichenbaum J; Gutin M; Kuntjoro N; Khorsandi D; Khademhosseini A
    J Control Release; 2019 Jan; 294():53-76. PubMed ID: 30500355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic Insight into the Structure-Processing-Property Relationships of Core-Shell Structured Dialcohol Cellulose Nanoparticles.
    Mehandzhiyski AY; Engel E; Larsson PA; Re GL; Zozoulenko IV
    ACS Appl Bio Mater; 2022 Oct; 5(10):4793-802. PubMed ID: 36194435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent growth of poly(amidoamine) dendrimer-like branched polymers at the reducing end of cellulose nanocrystals.
    Chemin M; Moreau C; Cathala B; Villares A
    Carbohydr Polym; 2022 Mar; 279():119008. PubMed ID: 34980353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.