These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32330006)

  • 1. Sculpting Artificial Edges in Monolayer MoS
    Rani R; Yoshimura A; Das S; Sahoo MR; Kundu A; Sahu KK; Meunier V; Nayak SK; Koratkar N; Hazra KS
    ACS Nano; 2020 May; 14(5):6258-6268. PubMed ID: 32330006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L
    ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Si/MoS
    Ko TS; Liu HY; Shieh J; Shieh D; Chen SH; Chen YL; Lin ET
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Catalytically Active Sites by Sculpting Artificial Edges on MoS
    Rani R; Biswas A; Ahammed R; Purkait T; Kundu A; Sarkar S; Raturi M; De Sarkar A; Dey RS; Hazra KS
    Small; 2023 Jun; 19(26):e2206357. PubMed ID: 36942916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Au nanoparticles functionalized 3D-MoS
    Singha SS; Mondal S; Bhattacharya TS; Das L; Sen K; Satpati B; Das K; Singha A
    Biosens Bioelectron; 2018 Nov; 119():10-17. PubMed ID: 30098461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled nanofabrication of metal-free SERS substrate on few layered black phosphorus by low power focused laser irradiation.
    Kundu A; Rani R; Hazra KS
    Nanoscale; 2019 Sep; 11(35):16245-16252. PubMed ID: 31453997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS
    Su S; Zhou Q; Zeng Z; Hu D; Wang X; Jin M; Gao X; Nötzel R; Zhou G; Zhang Z; Liu J
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8026-8035. PubMed ID: 29405056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin.
    Shorie M; Kumar V; Kaur H; Singh K; Tomer VK; Sabherwal P
    Mikrochim Acta; 2018 Feb; 185(3):158. PubMed ID: 29594650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization.
    Raja SS; Cheng CW; Sang Y; Chen CA; Zhang XQ; Dubey A; Yen TJ; Chang YM; Lee YH; Gwo S
    ACS Nano; 2020 Jul; 14(7):8838-8845. PubMed ID: 32589398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix.
    Liu H; Yang Z; Meng L; Sun Y; Wang J; Yang L; Liu J; Tian Z
    J Am Chem Soc; 2014 Apr; 136(14):5332-41. PubMed ID: 24641630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing.
    Li X; Guo S; Su J; Ren X; Fang Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28474-28483. PubMed ID: 32468820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Hotspots in Air: An Omnidirectional Three-Dimensional Platform for Stand-Off In-Air SERS Sensing of Airborne Species.
    Phan-Quang GC; Lee HK; Teng HW; Koh CSL; Yim BQ; Tan EKM; Tok WL; Phang IY; Ling XY
    Angew Chem Int Ed Engl; 2018 May; 57(20):5792-5796. PubMed ID: 29569823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable Self-Assembly of SERS Hotspots in Liquid Environment.
    Zhang D; Tang L; Chen J; Tang Z; Liang P; Huang Y; Cao M; Zou M; Ni D; Chen J; Yu Z; Jin S
    Langmuir; 2021 Jan; 37(2):939-948. PubMed ID: 33397111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D hotspot matrix of Au nanoparticles on Au island film with a spacer layer of dithiol molecules for highly sensitive surface-enhanced Raman spectroscopy.
    Lee DJ; Kim DY
    Sci Rep; 2021 Nov; 11(1):22399. PubMed ID: 34789757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials.
    Song X; Wang Y; Zhao F; Li Q; Ta HQ; Rümmeli MH; Tully CG; Li Z; Yin WJ; Yang L; Lee KB; Yang J; Bozkurt I; Liu S; Zhang W; Chhowalla M
    ACS Nano; 2019 Jul; 13(7):8312-8319. PubMed ID: 31284713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Induced In Situ Formation of a Nonmetallic Plasmonic MoS
    Li J; Xu X; Huang B; Lou Z; Li B
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10047-10053. PubMed ID: 33617225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.