BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32330035)

  • 1. Predicting Reactive Cysteines with Implicit-Solvent-Based Continuous Constant pH Molecular Dynamics in Amber.
    Harris RC; Liu R; Shen J
    J Chem Theory Comput; 2020 Jun; 16(6):3689-3698. PubMed ID: 32330035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p
    Harris RC; Shen J
    J Chem Inf Model; 2019 Nov; 59(11):4821-4832. PubMed ID: 31661616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Born Based Continuous Constant pH Molecular Dynamics in Amber: Implementation, Benchmarking and Analysis.
    Huang Y; Harris RC; Shen J
    J Chem Inf Model; 2018 Jul; 58(7):1372-1383. PubMed ID: 29949356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.
    Harris JA; Liu R; Martins de Oliveira V; Vázquez-Montelongo EA; Henderson JA; Shen J
    J Chem Theory Comput; 2022 Dec; 18(12):7510-7527. PubMed ID: 36377980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Methods for the Calculation of the pKa of Cysteine Residues in Proteins.
    Awoonor-Williams E; Rowley CN
    J Chem Theory Comput; 2016 Sep; 12(9):4662-73. PubMed ID: 27541839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.
    Huang Y; Chen W; Wallace JA; Shen J
    J Chem Theory Comput; 2016 Nov; 12(11):5411-5421. PubMed ID: 27709966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p
    Aleksandrov A; Roux B; MacKerell AD
    J Chem Theory Comput; 2020 Jul; 16(7):4655-4668. PubMed ID: 32464053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKa's.
    Ugur I; Marion A; Parant S; Jensen JH; Monard G
    J Chem Inf Model; 2014 Aug; 54(8):2200-13. PubMed ID: 25089727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases.
    Liu R; Zhan S; Che Y; Shen J
    J Med Chem; 2022 Jan; 65(2):1525-1535. PubMed ID: 34647463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox potential replica exchange molecular dynamics at constant pH in AMBER: Implementation and validation.
    Cruzeiro VWD; Amaral MS; Roitberg AE
    J Chem Phys; 2018 Aug; 149(7):072338. PubMed ID: 30134669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constant pH Replica Exchange Molecular Dynamics in Explicit Solvent Using Discrete Protonation States: Implementation, Testing, and Validation.
    Swails JM; York DM; Roitberg AE
    J Chem Theory Comput; 2014 Mar; 10(3):1341-1352. PubMed ID: 24803862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.
    Wallace JA; Wang Y; Shi C; Pastoor KJ; Nguyen BL; Xia K; Shen JK
    Proteins; 2011 Dec; 79(12):3364-73. PubMed ID: 21748801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
    Goh GB; Hulbert BS; Zhou H; Brooks CL
    Proteins; 2014 Jul; 82(7):1319-31. PubMed ID: 24375620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a buried ion pair in the hydrophobic core of a protein: An insight from constant pH molecular dynamics study.
    Pathak AK
    Biopolymers; 2015 Mar; 103(3):148-57. PubMed ID: 25363335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of proton-coupled conformational dynamics of SARS and MERS coronavirus papain-like proteases: Implication for designing broad-spectrum antiviral inhibitors.
    Henderson JA; Verma N; Harris RC; Liu R; Shen J
    J Chem Phys; 2020 Sep; 153(11):115101. PubMed ID: 32962355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the unusual protonation properties of the active site cysteines in thioredoxin.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Phys Chem B; 2006 Mar; 110(11):5758-61. PubMed ID: 16539521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking
    Awoonor-Williams E; Golosov AA; Hornak V
    J Chem Inf Model; 2023 Apr; 63(7):2170-2180. PubMed ID: 36996330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Accurate Prediction of Protonation Equilibrium of Nucleic Acids.
    Goh GB; Knight JL; Brooks CL
    J Phys Chem Lett; 2013 Mar; 4(5):760-766. PubMed ID: 23526474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic coupling of protonation and conformational equilibria in proteins: theory and simulation.
    Shi C; Wallace JA; Shen JK
    Biophys J; 2012 Apr; 102(7):1590-7. PubMed ID: 22500759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Use of the Discrete Constant pH Molecular Dynamics to Describe the Conformational Space of Peptides.
    Privat C; Madurga S; Mas F; Rubio-Martínez J
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33383731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.