BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32330068)

  • 1. Predicting Cancer Cell Line Dependencies From the Protein Expression Data of Reverse-Phase Protein Arrays.
    Chen MM; Li J; Mills GB; Liang H
    JCO Clin Cancer Inform; 2020 Apr; 4():357-366. PubMed ID: 32330068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.
    Krill-Burger JM; Dempster JM; Borah AA; Paolella BR; Root DE; Golub TR; Boehm JS; Hahn WC; McFarland JM; Vazquez F; Tsherniak A
    Genome Biol; 2023 Aug; 24(1):192. PubMed ID: 37612728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Ghandi M; Huang FW; Jané-Valbuena J; Kryukov GV; Lo CC; McDonald ER; Barretina J; Gelfand ET; Bielski CM; Li H; Hu K; Andreev-Drakhlin AY; Kim J; Hess JM; Haas BJ; Aguet F; Weir BA; Rothberg MV; Paolella BR; Lawrence MS; Akbani R; Lu Y; Tiv HL; Gokhale PC; de Weck A; Mansour AA; Oh C; Shih J; Hadi K; Rosen Y; Bistline J; Venkatesan K; Reddy A; Sonkin D; Liu M; Lehar J; Korn JM; Porter DA; Jones MD; Golji J; Caponigro G; Taylor JE; Dunning CM; Creech AL; Warren AC; McFarland JM; Zamanighomi M; Kauffmann A; Stransky N; Imielinski M; Maruvka YE; Cherniack AD; Tsherniak A; Vazquez F; Jaffe JD; Lane AA; Weinstock DM; Johannessen CM; Morrissey MP; Stegmeier F; Schlegel R; Hahn WC; Getz G; Mills GB; Boehm JS; Golub TR; Garraway LA; Sellers WR
    Nature; 2019 May; 569(7757):503-508. PubMed ID: 31068700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Cancer Genomic Amplifications Identifies Druggable Collateral Dependencies within the Amplicon.
    Pons G; Gallo-Oller G; Navarro N; Zarzosa P; Sansa-Girona J; García-Gilabert L; Magdaleno A; Segura MF; Sánchez de Toledo J; Gallego S; Moreno L; Roma J
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.
    McFarland JM; Ho ZV; Kugener G; Dempster JM; Montgomery PG; Bryan JG; Krill-Burger JM; Green TM; Vazquez F; Boehm JS; Golub TR; Hahn WC; Root DE; Tsherniak A
    Nat Commun; 2018 Nov; 9(1):4610. PubMed ID: 30389920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining a Cancer Dependency Map.
    Tsherniak A; Vazquez F; Montgomery PG; Weir BA; Kryukov G; Cowley GS; Gill S; Harrington WF; Pantel S; Krill-Burger JM; Meyers RM; Ali L; Goodale A; Lee Y; Jiang G; Hsiao J; Gerath WFJ; Howell S; Merkel E; Ghandi M; Garraway LA; Root DE; Golub TR; Boehm JS; Hahn WC
    Cell; 2017 Jul; 170(3):564-576.e16. PubMed ID: 28753430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization.
    Pacini C; Duncan E; Gonçalves E; Gilbert J; Bhosle S; Horswell S; Karakoc E; Lightfoot H; Curry E; Muyas F; Bouaboula M; Pedamallu CS; Cortes-Ciriano I; Behan FM; Zalmas LP; Barthorpe A; Francies H; Rowley S; Pollard J; Beltrao P; Parts L; Iorio F; Garnett MJ
    Cancer Cell; 2024 Feb; 42(2):301-316.e9. PubMed ID: 38215750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas.
    Li J; Akbani R; Zhao W; Lu Y; Weinstein JN; Mills GB; Liang H
    Cancer Res; 2017 Nov; 77(21):e51-e54. PubMed ID: 29092939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines.
    Zhao W; Li J; Chen MM; Luo Y; Ju Z; Nesser NK; Johnson-Camacho K; Boniface CT; Lawrence Y; Pande NT; Davies MA; Herlyn M; Muranen T; Zervantonakis IK; von Euw E; Schultz A; Kumar SV; Korkut A; Spellman PT; Akbani R; Slamon DJ; Gray JW; Brugge JS; Lu Y; Mills GB; Liang H
    Cancer Cell; 2020 Dec; 38(6):829-843.e4. PubMed ID: 33157050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Apr; 17(1):37. PubMed ID: 31039782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays.
    Li J; Zhao W; Akbani R; Liu W; Ju Z; Ling S; Vellano CP; Roebuck P; Yu Q; Eterovic AK; Byers LA; Davies MA; Deng W; Gopal YN; Chen G; von Euw EM; Slamon D; Conklin D; Heymach JV; Gazdar AF; Minna JD; Myers JN; Lu Y; Mills GB; Liang H
    Cancer Cell; 2017 Feb; 31(2):225-239. PubMed ID: 28196595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined gene essentiality scoring improves the prediction of cancer dependency maps.
    Wang W; Malyutina A; Pessia A; Saarela J; Heckman CA; Tang J
    EBioMedicine; 2019 Dec; 50():67-80. PubMed ID: 31732481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells.
    Meyers RM; Bryan JG; McFarland JM; Weir BA; Sizemore AE; Xu H; Dharia NV; Montgomery PG; Cowley GS; Pantel S; Goodale A; Lee Y; Ali LD; Jiang G; Lubonja R; Harrington WF; Strickland M; Wu T; Hawes DC; Zhivich VA; Wyatt MR; Kalani Z; Chang JJ; Okamoto M; Stegmaier K; Golub TR; Boehm JS; Vazquez F; Root DE; Hahn WC; Tsherniak A
    Nat Genet; 2017 Dec; 49(12):1779-1784. PubMed ID: 29083409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting.
    Iorio F; Behan FM; Gonçalves E; Bhosle SG; Chen E; Shepherd R; Beaver C; Ansari R; Pooley R; Wilkinson P; Harper S; Butler AP; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    BMC Genomics; 2018 Aug; 19(1):604. PubMed ID: 30103702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network Biology-Inspired Machine Learning Features Predict Cancer Gene Targets and Reveal Target Coordinating Mechanisms.
    Weiskittel TM; Cao A; Meng-Lin K; Lehmann Z; Feng B; Correia C; Zhang C; Wisniewski P; Zhu S; Yong Ung C; Li H
    Pharmaceuticals (Basel); 2023 May; 16(5):. PubMed ID: 37242535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TCPA v3.0: An Integrative Platform to Explore the Pan-Cancer Analysis of Functional Proteomic Data.
    Chen MM; Li J; Wang Y; Akbani R; Lu Y; Mills GB; Liang H
    Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S15-S25. PubMed ID: 31201206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.
    Ali M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MethCNA: a database for integrating genomic and epigenomic data in human cancer.
    Deng G; Yang J; Zhang Q; Xiao ZX; Cai H
    BMC Genomics; 2018 Feb; 19(1):138. PubMed ID: 29433427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer.
    Jiang G; Zhang S; Yazdanparast A; Li M; Pawar AV; Liu Y; Inavolu SM; Cheng L
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):525. PubMed ID: 27556158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data.
    Shimada K; Bachman JA; Muhlich JL; Mitchison TJ
    Elife; 2021 Feb; 10():. PubMed ID: 33554860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.