BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 32330198)

  • 1. Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium.
    Dong S; Fu X; Dong Y; Simões ML; Zhu J; Dimopoulos G
    PLoS Pathog; 2020 Apr; 16(4):e1008453. PubMed ID: 32330198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota.
    Dennison NJ; BenMarzouk-Hidalgo OJ; Dimopoulos G
    Dev Comp Immunol; 2015 Mar; 49(1):170-8. PubMed ID: 25445902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunomodulation by Mosquito Salivary Protein AgSAP Contributes to Early Host Infection by
    Arora G; Sajid A; Chuang YM; Dong Y; Gupta A; Gambardella K; DePonte K; Almeras L; Dimopolous G; Fikrig E
    mBio; 2021 Dec; 12(6):e0309121. PubMed ID: 34903042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteria- and IMD pathway-independent immune defenses against Plasmodium falciparum in Anopheles gambiae.
    Blumberg BJ; Trop S; Das S; Dimopoulos G
    PLoS One; 2013; 8(9):e72130. PubMed ID: 24019865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune resistance and tolerance strategies in malaria vector and non-vector mosquitoes.
    Habtewold T; Groom Z; Christophides GK
    Parasit Vectors; 2017 Apr; 10(1):186. PubMed ID: 28420446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species.
    Dong Y; Aguilar R; Xi Z; Warr E; Mongin E; Dimopoulos G
    PLoS Pathog; 2006 Jun; 2(6):e52. PubMed ID: 16789837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression.
    Simões ML; Dong Y; Hammond A; Hall A; Crisanti A; Nolan T; Dimopoulos G
    Dev Comp Immunol; 2017 Feb; 67():257-265. PubMed ID: 27667688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additional Feeding Reveals Differences in Immune Recognition and Growth of
    Kwon H; Simões ML; Reynolds RA; Dimopoulos G; Smith RC
    mSphere; 2021 Mar; 6(2):. PubMed ID: 33789941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector.
    Ukegbu CV; Giorgalli M; Tapanelli S; Rona LDP; Jaye A; Wyer C; Angrisano F; Blagborough AM; Christophides GK; Vlachou D
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7363-7373. PubMed ID: 32165544
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Molina-Cruz A; Canepa GE; Alves E Silva TL; Williams AE; Nagyal S; Yenkoidiok-Douti L; Nagata BM; Calvo E; Andersen J; Boulanger MJ; Barillas-Mury C
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2597-2605. PubMed ID: 31969456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes.
    Jaramillo-Gutierrez G; Rodrigues J; Ndikuyeze G; Povelones M; Molina-Cruz A; Barillas-Mury C
    BMC Microbiol; 2009 Jul; 9():154. PubMed ID: 19643026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infection intensity-dependent responses of Anopheles gambiae to the African malaria parasite Plasmodium falciparum.
    Mendes AM; Awono-Ambene PH; Nsango SE; Cohuet A; Fontenille D; Kafatos FC; Christophides GK; Morlais I; Vlachou D
    Infect Immun; 2011 Nov; 79(11):4708-15. PubMed ID: 21844236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered anopheles immunity to Plasmodium infection.
    Dong Y; Das S; Cirimotich C; Souza-Neto JA; McLean KJ; Dimopoulos G
    PLoS Pathog; 2011 Dec; 7(12):e1002458. PubMed ID: 22216006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection.
    Liu W; Hao Z; Huang L; Chen L; Wei Q; Cai L; Liang S
    Parasit Vectors; 2017 Feb; 10(1):86. PubMed ID: 28209211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi.
    Vandana V; Dong S; Sheth T; Sun Q; Wen H; Maldonado A; Xi Z; Dimopoulos G
    PLoS Pathog; 2024 Apr; 20(4):e1012145. PubMed ID: 38598552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa.
    Mendes AM; Schlegelmilch T; Cohuet A; Awono-Ambene P; De Iorio M; Fontenille D; Morlais I; Christophides GK; Kafatos FC; Vlachou D
    PLoS Pathog; 2008 May; 4(5):e1000069. PubMed ID: 18483558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caudal is a negative regulator of the Anopheles IMD pathway that controls resistance to Plasmodium falciparum infection.
    Clayton AM; Cirimotich CM; Dong Y; Dimopoulos G
    Dev Comp Immunol; 2013 Apr; 39(4):323-32. PubMed ID: 23178401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional mediators Kto and Skd are involved in the regulation of the IMD pathway and anti-Plasmodium defense in Anopheles gambiae.
    Chen Y; Dong Y; Sandiford S; Dimopoulos G
    PLoS One; 2012; 7(9):e45580. PubMed ID: 23049816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections.
    Kalappa DM; Subramani PA; Basavanna SK; Ghosh SK; Sundaramurthy V; Uragayala S; Tiwari S; Anvikar AR; Valecha N
    Malar J; 2018 Oct; 17(1):385. PubMed ID: 30359252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence.
    Dennison NJ; Saraiva RG; Cirimotich CM; Mlambo G; Mongodin EF; Dimopoulos G
    Malar J; 2016 Aug; 15(1):425. PubMed ID: 27549662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.