These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32330207)

  • 1. A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S.
    Kosciuch K; Riser-Espinoza D; Gerringer M; Erickson W
    PLoS One; 2020; 15(4):e0232034. PubMed ID: 32330207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.
    Erickson WP; Wolfe MM; Bay KJ; Johnson DH; Gehring JL
    PLoS One; 2014; 9(9):e107491. PubMed ID: 25222738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The geographic extent of bird populations affected by renewable-energy development.
    Vander Zanden HB; Nelson DM; Conkling TJ; Allison TD; Diffendorfer JE; Dietsch TV; Fesnock AL; Loss SR; Ortiz PA; Paulman R; Rogers KH; Sanzenbacher PM; Katzner TE
    Conserv Biol; 2024 Apr; 38(2):e14191. PubMed ID: 38180844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitations, lack of standardization, and recommended best practices in studies of renewable energy effects on birds and bats.
    Conkling TJ; Loss SR; Diffendorfer JE; Duerr AE; Katzner TE
    Conserv Biol; 2021 Feb; 35(1):64-76. PubMed ID: 31913528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach to enhance the conservation-compatibility of solar energy development.
    Cameron DR; Cohen BS; Morrison SA
    PLoS One; 2012; 7(6):e38437. PubMed ID: 22685568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numbers of wildlife fatalities at renewable energy facilities in a targeted development region.
    Conkling TJ; Fesnock AL; Katzner TE
    PLoS One; 2023; 18(12):e0295552. PubMed ID: 38100470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of solar and wind development on conservation values in the Mojave Desert.
    Parker SS; Cohen BS; Moore J
    PLoS One; 2018; 13(12):e0207678. PubMed ID: 30540781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-construction bird and bat fatality monitoring studies at wind energy projects in Latin America: A summary and review.
    Agudelo MS; Mabee TJ; Palmer R; Anderson R
    Heliyon; 2021 Jun; 7(6):e07251. PubMed ID: 34189305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of bird and bat mortality at wind turbines in the Northeastern United States.
    Choi DY; Wittig TW; Kluever BM
    PLoS One; 2020; 15(8):e0238034. PubMed ID: 32857780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating wind-turbine-caused bird and bat fatality when zero carcasses are observed.
    Huso MM; Dalthorp D; Dail D; Madsen L
    Ecol Appl; 2015 Jul; 25(5):1213-25. PubMed ID: 26485950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing an efficient protocol for monitoring eagle fatalities at wind energy facilities.
    Hallingstad EC; Rabie PA; Telander AC; Roppe JA; Nagy LR
    PLoS One; 2018; 13(12):e0208700. PubMed ID: 30540840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar energy development impacts on land cover change and protected areas.
    Hernandez RR; Hoffacker MK; Murphy-Mariscal ML; Wu GC; Allen MF
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13579-84. PubMed ID: 26483467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos.
    New L; Bjerre E; Millsap B; Otto MC; Runge MC
    PLoS One; 2015; 10(7):e0130978. PubMed ID: 26134412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refining estimates of bird collision and electrocution mortality at power lines in the United States.
    Loss SR; Will T; Marra PP
    PLoS One; 2014; 9(7):e101565. PubMed ID: 24991997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiyear monitoring of survival following mitigation-driven translocation of a long-lived threatened reptile.
    Dickson BG; Scherer RD; Kissel AM; Wallace BP; Langin KM; Gray ME; Scheib AF; Weise B
    Conserv Biol; 2019 Oct; 33(5):1094-1105. PubMed ID: 30793368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of raptor carcass persistence trials and the practical implications for fatality estimation at wind farms.
    Wilson D; Hulka S; Bennun L
    PeerJ; 2022; 10():e14163. PubMed ID: 36405013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting strike susceptibility and collision patterns of the common buzzard at wind turbine structures in the federal state of Brandenburg, Germany.
    Bose A; Dürr T; Klenke RA; Henle K
    PLoS One; 2020; 15(1):e0227698. PubMed ID: 31978066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of wind-energy facilities on breeding grassland bird distributions.
    Shaffer JA; Buhl DA
    Conserv Biol; 2016 Feb; 30(1):59-71. PubMed ID: 26213098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Game bird carcasses are less persistent than raptor carcasses, but can predict raptor persistence dynamics.
    Hallingstad E; Riser-Espinoza D; Brown S; Rabie P; Haddock J; Kosciuch K
    PLoS One; 2023; 18(1):e0279997. PubMed ID: 36595543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany.
    Bose A; Dürr T; Klenke RA; Henle K
    Sci Rep; 2018 Feb; 8(1):3777. PubMed ID: 29491479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.