BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32330239)

  • 1. SparkINFERNO: a scalable high-throughput pipeline for inferring molecular mechanisms of non-coding genetic variants.
    Kuksa PP; Lee CY; Amlie-Wolf A; Gangadharan P; Mlynarski EE; Chou YF; Lin HJ; Issen H; Greenfest-Allen E; Valladares O; Leung YY; Wang LS
    Bioinformatics; 2020 Jun; 36(12):3879-3881. PubMed ID: 32330239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. hipFG: high-throughput harmonization and integration pipeline for functional genomics data.
    Cifello J; Kuksa PP; Saravanan N; Valladares O; Wang LS; Leung YY
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37947320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. INFERNO: inferring the molecular mechanisms of noncoding genetic variants.
    Amlie-Wolf A; Tang M; Mlynarski EE; Kuksa PP; Valladares O; Katanic Z; Tsuang D; Brown CD; Schellenberg GD; Wang LS
    Nucleic Acids Res; 2018 Sep; 46(17):8740-8753. PubMed ID: 30113658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of methylation QTL and enhancer-target gene maps with schizophrenia GWAS summary results identifies novel genes.
    Wu C; Pan W
    Bioinformatics; 2019 Oct; 35(19):3576-3583. PubMed ID: 30850848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach.
    Schmidt EM; Zhang J; Zhou W; Chen J; Mohlke KL; Chen YE; Willer CJ
    Bioinformatics; 2015 Aug; 31(16):2601-6. PubMed ID: 25886982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying functional impact of non-coding variants with multi-task Bayesian neural network.
    Xu C; Liu Q; Zhou J; Xie M; Feng J; Jiang T
    Bioinformatics; 2020 Mar; 36(5):1397-1404. PubMed ID: 31693090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. echolocatoR: an automated end-to-end statistical and functional genomic fine-mapping pipeline.
    Schilder BM; Humphrey J; Raj T
    Bioinformatics; 2022 Jan; 38(2):536-539. PubMed ID: 34529038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits.
    Huang D; Yi X; Zhang S; Zheng Z; Wang P; Xuan C; Sham PC; Wang J; Li MJ
    Nucleic Acids Res; 2018 Jul; 46(W1):W114-W120. PubMed ID: 29771388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring the Molecular Mechanisms of Noncoding Alzheimer's Disease-Associated Genetic Variants.
    Amlie-Wolf A; Tang M; Way J; Dombroski B; Jiang M; Vrettos N; Chou YF; Zhao Y; Kuzma A; Mlynarski EE; Leung YY; Brown CD; Wang LS; Schellenberg GD
    J Alzheimers Dis; 2019; 72(1):301-318. PubMed ID: 31561366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PGA: post-GWAS analysis for disease gene identification.
    Lin JR; Jaroslawicz D; Cai Y; Zhang Q; Wang Z; Zhang ZD
    Bioinformatics; 2018 May; 34(10):1786-1788. PubMed ID: 29300829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting target genes of non-coding regulatory variants with IRT.
    Wu Z; Ioannidis NM; Zou J
    Bioinformatics; 2020 Aug; 36(16):4440-4448. PubMed ID: 32330225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms.
    Park CY; Krishnan A; Zhu Q; Wong AK; Lee YS; Troyanskaya OG
    Bioinformatics; 2015 Apr; 31(7):1093-101. PubMed ID: 25431329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters.
    Huang H; Tata S; Prill RJ
    Bioinformatics; 2013 Jan; 29(1):135-6. PubMed ID: 23202745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HUGIn: Hi-C Unifying Genomic Interrogator.
    Martin JS; Xu Z; Reiner AP; Mohlke KL; Sullivan P; Ren B; Hu M; Li Y
    Bioinformatics; 2017 Dec; 33(23):3793-3795. PubMed ID: 28582503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants.
    Lee D; Williamson VS; Bigdeli TB; Riley BP; Fanous AH; Vladimirov VI; Bacanu SA
    Bioinformatics; 2015 Apr; 31(8):1176-82. PubMed ID: 25505091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The open targets post-GWAS analysis pipeline.
    Peat G; Jones W; Nuhn M; Marugán JC; Newell W; Dunham I; Zerbino D
    Bioinformatics; 2020 May; 36(9):2936-2937. PubMed ID: 31930349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LSMM: a statistical approach to integrating functional annotations with genome-wide association studies.
    Ming J; Dai M; Cai M; Wan X; Liu J; Yang C
    Bioinformatics; 2018 Aug; 34(16):2788-2796. PubMed ID: 29608640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint analysis of individual-level and summary-level GWAS data by leveraging pleiotropy.
    Dai M; Wan X; Peng H; Wang Y; Liu Y; Liu J; Xu Z; Yang C
    Bioinformatics; 2019 May; 35(10):1729-1736. PubMed ID: 30307540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.