BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 32330447)

  • 1. Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/FTD.
    Dafinca R; Barbagallo P; Farrimond L; Candalija A; Scaber J; Ababneh NA; Sathyaprakash C; Vowles J; Cowley SA; Talbot K
    Stem Cell Reports; 2020 May; 14(5):892-908. PubMed ID: 32330447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations.
    Bursch F; Kalmbach N; Naujock M; Staege S; Eggenschwiler R; Abo-Rady M; Japtok J; Guo W; Hensel N; Reinhardt P; Boeckers TM; Cantz T; Sterneckert J; Van Den Bosch L; Hermann A; Petri S; Wegner F
    Hum Mol Genet; 2019 Sep; 28(17):2835-2850. PubMed ID: 31108504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
    Dafinca R; Scaber J; Ababneh N; Lalic T; Weir G; Christian H; Vowles J; Douglas AG; Fletcher-Jones A; Browne C; Nakanishi M; Turner MR; Wade-Martins R; Cowley SA; Talbot K
    Stem Cells; 2016 Aug; 34(8):2063-78. PubMed ID: 27097283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca
    Selvaraj BT; Livesey MR; Zhao C; Gregory JM; James OT; Cleary EM; Chouhan AK; Gane AB; Perkins EM; Dando O; Lillico SG; Lee YB; Nishimura AL; Poreci U; Thankamony S; Pray M; Vasistha NA; Magnani D; Borooah S; Burr K; Story D; McCampbell A; Shaw CE; Kind PC; Aitman TJ; Whitelaw CBA; Wilmut I; Smith C; Miles GB; Hardingham GE; Wyllie DJA; Chandran S
    Nat Commun; 2018 Jan; 9(1):347. PubMed ID: 29367641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis.
    Mehta AR; Gregory JM; Dando O; Carter RN; Burr K; Nanda J; Story D; McDade K; Smith C; Morton NM; Mahad DJ; Hardingham GE; Chandran S; Selvaraj BT
    Acta Neuropathol; 2021 Feb; 141(2):257-279. PubMed ID: 33398403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction.
    Perkins EM; Burr K; Banerjee P; Mehta AR; Dando O; Selvaraj BT; Suminaite D; Nanda J; Henstridge CM; Gillingwater TH; Hardingham GE; Wyllie DJA; Chandran S; Livesey MR
    Mol Neurodegener; 2021 Mar; 16(1):13. PubMed ID: 33663561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair.
    Ababneh NA; Scaber J; Flynn R; Douglas A; Barbagallo P; Candalija A; Turner MR; Sims D; Dafinca R; Cowley SA; Talbot K
    Hum Mol Genet; 2020 Aug; 29(13):2200-2217. PubMed ID: 32504093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons.
    Lopez-Gonzalez R; Lu Y; Gendron TF; Karydas A; Tran H; Yang D; Petrucelli L; Miller BL; Almeida S; Gao FB
    Neuron; 2016 Oct; 92(2):383-391. PubMed ID: 27720481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts.
    Onesto E; Colombrita C; Gumina V; Borghi MO; Dusi S; Doretti A; Fagiolari G; Invernizzi F; Moggio M; Tiranti V; Silani V; Ratti A
    Acta Neuropathol Commun; 2016 May; 4(1):47. PubMed ID: 27151080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysregulation of AMPA receptor subunit expression in sporadic ALS post-mortem brain.
    Gregory JM; Livesey MR; McDade K; Selvaraj BT; Barton SK; Chandran S; Smith C
    J Pathol; 2020 Jan; 250(1):67-78. PubMed ID: 31579943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity.
    Birger A; Ben-Dor I; Ottolenghi M; Turetsky T; Gil Y; Sweetat S; Perez L; Belzer V; Casden N; Steiner D; Izrael M; Galun E; Feldman E; Behar O; Reubinoff B
    EBioMedicine; 2019 Dec; 50():274-289. PubMed ID: 31787569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD.
    Moore S; Alsop E; Lorenzini I; Starr A; Rabichow BE; Mendez E; Levy JL; Burciu C; Reiman R; Chew J; Belzil VV; W Dickson D; Robertson J; Staats KA; Ichida JK; Petrucelli L; Van Keuren-Jensen K; Sattler R
    Acta Neuropathol; 2019 Jul; 138(1):49-65. PubMed ID: 30945056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations.
    Fazal R; Boeynaems S; Swijsen A; De Decker M; Fumagalli L; Moisse M; Vanneste J; Guo W; Boon R; Vercruysse T; Eggermont K; Swinnen B; Beckers J; Pakravan D; Vandoorne T; Vanden Berghe P; Verfaillie C; Van Den Bosch L; Van Damme P
    EMBO J; 2021 Apr; 40(7):e106177. PubMed ID: 33694180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA dependent suppression of C9orf72 ALS/FTD associated neurodegeneration by Matrin-3.
    Ramesh N; Daley EL; Gleixner AM; Mann JR; Kour S; Mawrie D; Anderson EN; Kofler J; Donnelly CJ; Kiskinis E; Pandey UB
    Acta Neuropathol Commun; 2020 Oct; 8(1):177. PubMed ID: 33129345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-autonomous immune dysfunction driven by disrupted autophagy in
    Banerjee P; Mehta AR; Nirujogi RS; Cooper J; James OG; Nanda J; Longden J; Burr K; McDade K; Salzinger A; Paza E; Newton J; Story D; Pal S; Smith C; Alessi DR; Selvaraj BT; Priller J; Chandran S
    Sci Adv; 2023 Apr; 9(16):eabq0651. PubMed ID: 37083530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD.
    Pilotto F; Schmitz A; Maharjan N; Diab R; Odriozola A; Tripathi P; Yamoah A; Scheidegger O; Oestmann A; Dennys CN; Sinha Ray S; Rodrigo R; Kolb S; Aronica E; Di Santo S; Widmer HR; Charlet-Berguerand N; Selvaraj BT; Chandran S; Meyer K; Zuber B; Goswami A; Weis J; Saxena S
    Acta Neuropathol; 2022 Nov; 144(5):939-966. PubMed ID: 36121477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability.
    Devlin AC; Burr K; Borooah S; Foster JD; Cleary EM; Geti I; Vallier L; Shaw CE; Chandran S; Miles GB
    Nat Commun; 2015 Jan; 6():5999. PubMed ID: 25580746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations.
    Mitsuzawa S; Suzuki N; Akiyama T; Ishikawa M; Sone T; Kawada J; Funayama R; Shirota M; Mitsuhashi H; Morimoto S; Ikeda K; Shijo T; Ohno A; Nakamura N; Ono H; Ono R; Osana S; Nakagawa T; Nishiyama A; Izumi R; Kaneda S; Ikeuchi Y; Nakayama K; Fujii T; Warita H; Okano H; Aoki M
    Stem Cell Reports; 2021 Jun; 16(6):1527-1541. PubMed ID: 34048688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD.
    Starr A; Sattler R
    Brain Res; 2018 Aug; 1693(Pt A):98-108. PubMed ID: 29453960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway.
    Ciura S; Sellier C; Campanari ML; Charlet-Berguerand N; Kabashi E
    Autophagy; 2016 Aug; 12(8):1406-8. PubMed ID: 27245636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.