These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 32330583)

  • 1. Interregional spread in Spain of linezolid-resistant Enterococcus spp. isolates carrying the optrA and poxtA genes.
    Moure Z; Lara N; Marín M; Sola-Campoy PJ; Bautista V; Gómez-Bertomeu F; Gómez-Dominguez C; Pérez-Vázquez M; Aracil B; Campos J; Cercenado E; Oteo-Iglesias J;
    Int J Antimicrob Agents; 2020 Jun; 55(6):105977. PubMed ID: 32330583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemiology and genetic diversity of linezolid-resistant Enterococcus clinical isolates in Belgium from 2013 to 2021.
    Mortelé O; van Kleef-van Koeveringe S; Vandamme S; Jansens H; Goossens H; Matheeussen V
    J Glob Antimicrob Resist; 2024 Sep; 38():21-26. PubMed ID: 38719188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: high prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds.
    Egan SA; Shore AC; O'Connell B; Brennan GI; Coleman DC
    J Antimicrob Chemother; 2020 Jul; 75(7):1704-1711. PubMed ID: 32129849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance.
    Gawryszewska I; Żabicka D; Hryniewicz W; Sadowy E
    Eur J Clin Microbiol Infect Dis; 2017 Jul; 36(7):1279-1286. PubMed ID: 28197728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic analysis of enterococci carrying optrA, poxtA, and vanA resistance genes from wild boars, Italy.
    Cinthi M; Coccitto SN; Massacci FR; Albini E; Binucci G; Gobbi M; Tentellini M; D'Avino N; Ranucci A; Papa P; Magistrali CF; Brenciani A; Giovanetti E
    J Appl Microbiol; 2024 Aug; 135(8):. PubMed ID: 39076010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas.
    Fioriti S; Coccitto SN; Cedraro N; Simoni S; Morroni G; Brenciani A; Mangiaterra G; Vignaroli C; Vezzulli L; Biavasco F; Giovanetti E
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic epidemiology reveals multiple mechanisms of linezolid resistance in clinical enterococci in China.
    Wang Z; Liu D; Zhang J; Liu L; Zhang Z; Liu C; Hu S; Wu L; He Z; Sun H
    Ann Clin Microbiol Antimicrob; 2024 May; 23(1):41. PubMed ID: 38704577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.
    Kang ZZ; Lei CW; Kong LH; Wang YL; Ye XL; Ma BH; Wang XC; Li C; Zhang Y; Wang HN
    J Glob Antimicrob Resist; 2019 Dec; 19():333-337. PubMed ID: 31136832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nasotracheal enterococcal carriage and resistomes: detection of optrA-, poxtA- and cfrD-carrying strains in migratory birds, livestock, pets, and in-contact humans in Spain.
    Abdullahi IN; Lozano C; Juárez-Fernández G; Höfle U; Simón C; Rueda S; Martínez A; Álvarez-Martínez S; Eguizábal P; Martínez-Cámara B; Zarazaga M; Torres C
    Eur J Clin Microbiol Infect Dis; 2023 May; 42(5):569-581. PubMed ID: 36890281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of the
    Rodríguez-Lucas C; Fernández J; Vázquez X; de Toro M; Ladero V; Fuster C; Rodicio R; Rodicio MR
    Microb Drug Resist; 2022 Jul; 28(7):773-779. PubMed ID: 35727074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic features of the poxtA linezolid resistance gene in human enterococci from France.
    Dejoies L; Sassi M; Schutz S; Moreaux J; Zouari A; Potrel S; Collet A; Lecourt M; Auger G; Cattoir V
    J Antimicrob Chemother; 2021 Jul; 76(8):1978-1985. PubMed ID: 33895846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates.
    Bender JK; Fleige C; Lange D; Klare I; Werner G
    Int J Antimicrob Agents; 2018 Dec; 52(6):819-827. PubMed ID: 30236952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program.
    Deshpande LM; Castanheira M; Flamm RK; Mendes RE
    J Antimicrob Chemother; 2018 Sep; 73(9):2314-2322. PubMed ID: 29878213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faecal carriage of enterococci harbouring oxazolidinone resistance genes among healthy humans in the community in Switzerland.
    Nüesch-Inderbinen M; Biggel M; Zurfluh K; Treier A; Stephan R
    J Antimicrob Chemother; 2022 Sep; 77(10):2779-2783. PubMed ID: 35971252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China.
    Zhou W; Gao S; Xu H; Zhang Z; Chen F; Shen H; Zhang C
    J Glob Antimicrob Resist; 2019 Jun; 17():180-186. PubMed ID: 30641287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of molecular epidemiological characteristics and antimicrobial susceptibility of vancomycin-resistant and linezolid-resistant Enterococcus in China.
    Pan P; Sun L; Shi X; Huang X; Yin Y; Pan B; Hu L; Shen Q
    BMC Med Genomics; 2024 Jul; 17(1):174. PubMed ID: 38951840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferable linezolid resistance genes (optrA and poxtA) in enterococci derived from livestock compost at Japanese farms.
    Fukuda A; Nakajima C; Suzuki Y; Usui M
    J Glob Antimicrob Resist; 2024 Mar; 36():336-344. PubMed ID: 38336229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of
    McHugh MP; Parcell BJ; Pettigrew KA; Toner G; Khatamzas E; El Sakka N; Karcher AM; Walker J; Weir R; Meunier D; Hopkins KL; Woodford N; Templeton KE; Gillespie SH; Holden MTG
    Microbiology (Reading); 2022 Feb; 168(2):. PubMed ID: 35130141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.
    Wang Y; Lv Y; Cai J; Schwarz S; Cui L; Hu Z; Zhang R; Li J; Zhao Q; He T; Wang D; Wang Z; Shen Y; Li Y; Feßler AT; Wu C; Yu H; Deng X; Xia X; Shen J
    J Antimicrob Chemother; 2015 Aug; 70(8):2182-90. PubMed ID: 25977397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an Enterococcus faecium strain isolated from raw bovine milk co-harbouring the oxazolidinone resistance genes optrA and poxtA in China.
    Hou J; Xu Q; Zhou L; Chai J; Lin L; Ma C; Zhu Y; Zhang W
    Vet Microbiol; 2024 Jun; 293():110103. PubMed ID: 38718528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.