BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32330600)

  • 1. ATP-sensitive K
    Colburn TD; Holdsworth CT; Craig JC; Hirai DM; Montgomery S; Poole DC; Musch TI; Kenney MJ
    Respir Physiol Neurobiol; 2020 Jul; 278():103444. PubMed ID: 32330600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute inhibition of ATP-sensitive K+ channels impairs skeletal muscle vascular control in rats during treadmill exercise.
    Holdsworth CT; Copp SW; Ferguson SK; Sims GE; Poole DC; Musch TI
    Am J Physiol Heart Circ Physiol; 2015 Jun; 308(11):H1434-42. PubMed ID: 25820394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of capillary hemodynamics by K
    Hirai DM; Tabuchi A; Craig JC; Colburn TD; Musch TI; Poole DC
    Physiol Rep; 2021 Apr; 9(8):e14803. PubMed ID: 33932103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive potassium channels mediate contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle.
    Thomas GD; Hansen J; Victor RG
    J Clin Invest; 1997 Jun; 99(11):2602-9. PubMed ID: 9169489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of rat skeletal muscle microvascular O2 pressure via KATP channel inhibition following the onset of contractions.
    Holdsworth CT; Ferguson SK; Poole DC; Musch TI
    Respir Physiol Neurobiol; 2016 Feb; 222():48-54. PubMed ID: 26592147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sexual dimorphism in vascular ATP-sensitive K
    Colburn TD; Weber RE; Schulze KM; Hageman KS; Horn AG; Behnke BJ; Poole DC; Musch TI
    J Physiol; 2021 Jul; 599(13):3279-3293. PubMed ID: 34101850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle.
    Thomas GD; Victor RG
    J Physiol; 1998 Feb; 506 ( Pt 3)(Pt 3):817-26. PubMed ID: 9503340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene transfer of cystathionine β-synthase into RVLM increases hydrogen sulfide-mediated suppression of sympathetic outflow via KATP channel in normotensive rats.
    Duan XC; Guo R; Liu SY; Xiao L; Xue HM; Guo Q; Jin S; Wu YM
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H603-11. PubMed ID: 25599573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular ATP-sensitive K
    Colburn TD; Weber RE; Hageman KS; Caldwell JT; Schulze KM; Ade CJ; Behnke BJ; Poole DC; Musch TI
    J Physiol; 2020 Nov; 598(21):4843-4858. PubMed ID: 32798233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus anthracis lethal toxin alters regulation of visceral sympathetic nerve discharge.
    Garcia AA; Fels RJ; Mosher LJ; Kenney MJ
    J Appl Physiol (1985); 2012 Mar; 112(6):1033-40. PubMed ID: 22114180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia.
    Bryan PT; Marshall JM
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):163-75. PubMed ID: 9831724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of KATP channel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle.
    Keller DM; Ogoh S; Greene S; Olivencia-Yurvati A; Raven PB
    J Physiol; 2004 Nov; 561(Pt 1):273-82. PubMed ID: 15345750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.
    Song J; Tanida M; Shibamoto T; Zhang T; Wang M; Kuda Y; Kurata Y
    PLoS One; 2016; 11(3):e0150882. PubMed ID: 26998924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal nitric oxide synthase inhibition and regional sympathetic nerve discharge: implications for peripheral vascular control.
    Copp SW; Hirai DM; Sims GE; Fels RJ; Musch TI; Poole DC; Kenney MJ
    Respir Physiol Neurobiol; 2013 May; 186(3):285-9. PubMed ID: 23454026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.
    Copp SW; Inagaki T; White MJ; Hirai DM; Ferguson SK; Holdsworth CT; Sims GE; Poole DC; Musch TI
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(2):H206-14. PubMed ID: 23144313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular K
    Holdsworth CT; Ferguson SK; Colburn TD; Fees AJ; Craig JC; Hirai DM; Poole DC; Musch TI
    Respir Physiol Neurobiol; 2017 Apr; 238():33-40. PubMed ID: 28119150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycemic modulation of insulin/IGF-1 mediated skeletal muscle blood following sympathetic denervation in normal rats.
    Duanmu Z; Scislo T; Dunbar JC
    Clin Exp Hypertens; 1999 Nov; 21(8):1239-55. PubMed ID: 10574411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute arteriolar vasoconstriction following furosemide in conscious spontaneously hypertensive rats.
    Janssen BJ; Struyker-Boudier HA; Smits JF
    Eur J Pharmacol; 1989 Oct; 170(1-2):1-9. PubMed ID: 2533077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of glibenclamide on cutaneous laser-Doppler flux.
    Cankar K; Strucl M
    Microvasc Res; 2008 Jan; 75(1):97-103. PubMed ID: 17675187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise.
    Fernandes IA; Mattos JD; Campos MO; Machado AC; Rocha MP; Rocha NG; Vianna LC; Nobrega AC
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1541-8. PubMed ID: 27016578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.