BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32330841)

  • 1. Stability and absorption mechanism of typical plant miRNAs in an in vitro gastrointestinal environment: basis for their cross-kingdom nutritional effects.
    Wang X; Ren X; Ning L; Wang P; Xu K
    J Nutr Biochem; 2020 Jul; 81():108376. PubMed ID: 32330841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates.
    Jia M; He J; Bai W; Lin Q; Deng J; Li W; Bai J; Fu D; Ma Y; Ren J; Xiong S
    Food Funct; 2021 Oct; 12(20):9549-9562. PubMed ID: 34664582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary RNAs: New Stories Regarding Oral Delivery.
    Yang J; Hirschi KD; Farmer LM
    Nutrients; 2015 Apr; 7(5):3184-99. PubMed ID: 25942490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation.
    Sanchita ; Trivedi R; Asif MH; Trivedi PK
    RNA Biol; 2018; 15(12):1433-1439. PubMed ID: 30474479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food derived microRNAs.
    Wagner AE; Piegholdt S; Ferraro M; Pallauf K; Rimbach G
    Food Funct; 2015 Mar; 6(3):714-8. PubMed ID: 25644027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles.
    Qin X; Wang X; Xu K; Zhang Y; Ren X; Qi B; Liang Q; Yang X; Li L; Li S
    J Agric Food Chem; 2022 Apr; 70(14):4316-4327. PubMed ID: 35352925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs.
    Chen Q; Zhang F; Dong L; Wu H; Xu J; Li H; Wang J; Zhou Z; Liu C; Wang Y; Liu Y; Lu L; Wang C; Liu M; Chen X; Wang C; Zhang C; Li D; Zen K; Wang F; Zhang Q; Zhang CY
    Cell Res; 2021 Mar; 31(3):247-258. PubMed ID: 32801357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: underestimated effects of contamination in NGS.
    Tosar JP; Rovira C; Naya H; Cayota A
    RNA; 2014 Jun; 20(6):754-7. PubMed ID: 24729469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill.
    Zhang J; Zeng R; Chen J; Liu X; Liao Q
    Gene; 2008 Oct; 423(1):1-7. PubMed ID: 18602455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs in tomato plants.
    Zuo J; Wang Y; Liu H; Ma Y; Ju Z; Zhai B; Fu D; Zhu Y; Luo Y; Zhu B
    Sci China Life Sci; 2011 Jul; 54(7):599-605. PubMed ID: 21748583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine.
    Meng J; Liu D; Sun C; Luan Y
    BMC Bioinformatics; 2014 Dec; 15(1):423. PubMed ID: 25547126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the contribution of the nasal cavity and gastrointestinal tract to drug absorption following nasal application to rats.
    Furubayashi T; Kamaguchi A; Kawaharada K; Masaoka Y; Kataoka M; Yamashita S; Higashi Y; Sakane T
    Biol Pharm Bull; 2007 Mar; 30(3):608-11. PubMed ID: 17329868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive Degradation and Low Bioavailability of Orally Consumed Corn miRNAs in Mice.
    Huang H; Davis CD; Wang TTY
    Nutrients; 2018 Feb; 10(2):. PubMed ID: 29462875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soybean-derived miRNAs specifically inhibit proliferation and stimulate apoptosis of human colonic Caco-2 cancer cells but not normal mucosal cells in culture.
    Liu J; Wang F; Weng Z; Sui X; Fang Y; Tang X; Shen X
    Genomics; 2020 Sep; 112(5):2949-2958. PubMed ID: 32407773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virus-Based microRNA Silencing in Plants.
    Zhao J; Wang G; Jiang H; Liu T; Dong J; Wang Z; Zhang B; Song J
    Methods Mol Biol; 2020; 2172():243-257. PubMed ID: 32557374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.
    Shen D; Suhrkamp I; Wang Y; Liu S; Menkhaus J; Verreet JA; Fan L; Cai D
    New Phytol; 2014 Nov; 204(3):577-594. PubMed ID: 25132374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening.
    Moxon S; Jing R; Szittya G; Schwach F; Rusholme Pilcher RL; Moulton V; Dalmay T
    Genome Res; 2008 Oct; 18(10):1602-9. PubMed ID: 18653800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling microRNAs and their targets in an important fleshy fruit: tomato (Solanum lycopersicum).
    Din M; Barozai MY
    Gene; 2014 Feb; 535(2):198-203. PubMed ID: 24315821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.
    Philip A; Ferro VA; Tate RJ
    Mol Nutr Food Res; 2015 Oct; 59(10):1962-72. PubMed ID: 26147655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of 20 microRNAs from Oryza sativa.
    Wang JF; Zhou H; Chen YQ; Luo QJ; Qu LH
    Nucleic Acids Res; 2004; 32(5):1688-95. PubMed ID: 15020705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.