These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32331136)

  • 1. Molecular Dynamics Study of Graphene Nanoflake Shuttle Device on Graphene Nanoribbon with Carbon Nanotube Blocks.
    Kang JW; Kim KS; Kwon OK
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5570-5574. PubMed ID: 32331136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9158-64. PubMed ID: 25971029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Archive Based on Graphene Nanoflake Shuttle Encapsulated in Bi-Layered Graphene Nanoribbon.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2015 Jul; 15(7):4895-9. PubMed ID: 26373053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Study on Graphene-Nanoflake Sensor Sandwiched Between Crossed Graphene-Nanoribbon Junctions.
    Kang JW; Kim KS; Kim HW; Kwon OK
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3887-3890. PubMed ID: 33715711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schematics and Energetics of Bucky Shuttle Memory on Graphene Nanoribbon Array.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2891-6. PubMed ID: 27455728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations of a C60 Molecule Adsorbed on Sinusoidal Graphene Nanoflake.
    Kwon OK; Kang JW; Kim KS; Park J
    J Nanosci Nanotechnol; 2015 Jul; 15(7):4908-12. PubMed ID: 26373055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory Behavior of Graphene Nanoflake on Graphene Nanoribbon.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1199-202. PubMed ID: 26353633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scattering characteristics of an exciton-plasmon nanohybrid made by coupling a monolayer graphene nanoflake to a carbon nanotube.
    Senevirathne V; Hapuarachchi H; Mallawaarachchi S; Gunapala SD; Stockman MI; Premaratne M
    J Phys Condens Matter; 2019 Feb; 31(8):085302. PubMed ID: 30540985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Single-Stranded DNA Coatings on the Interaction between Graphene Nanoflakes and Lipid Bilayers.
    Moore TC; Yang AH; Ogungbesan O; Hartkamp R; Iacovella CR; Zhang Q; McCabe C
    J Phys Chem B; 2019 Sep; 123(36):7711-7721. PubMed ID: 31405277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of rolling of nanoribbon on tube and sphere.
    Yin Q; Shi X
    Nanoscale; 2013 Jun; 5(12):5450-5. PubMed ID: 23661239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids.
    Shakourian-Fard M; Kamath G
    Phys Chem Chem Phys; 2017 Feb; 19(6):4383-4395. PubMed ID: 28119976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.
    Liu M; Du Y; Miao YE; Ding Q; He S; Tjiu WW; Pan J; Liu T
    Nanoscale; 2015 Jan; 7(3):1037-46. PubMed ID: 25474256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bistability of C60 Fullerene in Partially Side-Opened Carbon Nanopeapod.
    Kim SY; Kim KS; Kang JW; Kwon OK
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9025-9. PubMed ID: 26726636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geminal Dicationic Ionic Liquids (GDILs) and Their Adsorption on Graphene Nanoflakes.
    Shakourian-Fard M; Ghenaatian HR; Kamath G
    ACS Omega; 2024 Feb; 9(7):7575-7587. PubMed ID: 38405523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective interface transparency in graphene nanoribbon based molecular junctions.
    Dou KP; Kaun CC; Zhang RQ
    Nanoscale; 2018 Mar; 10(10):4861-4864. PubMed ID: 29473924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube.
    Mandal B; Sarkar S; Sarkar P
    J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helical encapsulation of graphene nanoribbon into carbon nanotube.
    Jiang Y; Li H; Li Y; Yu H; Liew KM; He Y; Liu X
    ACS Nano; 2011 Mar; 5(3):2126-33. PubMed ID: 21309562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene.
    Cho KM; Cho SY; Chong S; Koh HJ; Kim DW; Kim J; Jung HT
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42905-42914. PubMed ID: 30421906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.