These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32331182)

  • 1. Highly Ordered Nanotube Formation on Beta Typed Ti-
    Kim SP; Choe HC
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5791-5795. PubMed ID: 32331182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotube Morphology Changes of Ti-
    Cho HR; Choe HC
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4807-4812. PubMed ID: 33691870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotube Morphology Changes on the Ti-
    Kim HJ; Choe HC
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5751-5754. PubMed ID: 32331173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenomena of Nano- and Micro-Pore Formation on Ti-(10~50)Ta Alloys by Plasma Electrolytic Oxidation for Dental Implants.
    Kim JJ; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2285-290. PubMed ID: 29638290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenomena of nanotube nucleation and growth on new ternary titanium alloys.
    Choe HC; Jeong YH; Brantley WA
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique.
    Kim HJ; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical oxide nanotube formation on the Ti-35Ta-xHf alloys for dental materials.
    Moon BH; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7428-32. PubMed ID: 22103212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotubular oxide surface and layer formed on the Ti-35Ta-xZr alloys for biomaterials.
    Kim EJ; Kim WG; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7433-7. PubMed ID: 22103213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Characteristics of Nanotube Formed Ti–25Nb–xZr Alloys.
    Byeon IS; Choe HC
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2655-660. PubMed ID: 29664261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Characterization of Titania Nanotubes Fabricated on Ti-Nb Alloys: Surface Topography, Structure, Physicomechanical Behavior, and a Cell Culture Assay.
    Chernozem RV; Surmeneva MA; Ignatov VP; Peltek OO; Goncharenko AA; Muslimov AR; Timin AS; Tyurin AI; Ivanov YF; Grandini CR; Surmenev RA
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1487-1499. PubMed ID: 33455386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and Mechanical Characteristics of Ti-Ta Alloys before and after NaOH Treatment and Their Behavior in Simulated Body Fluid.
    Hulka I; Mirza-Rosca JC; Buzdugan D; Saceleanu A
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of nanotube formed Ti-30Nb-7Ta alloys.
    Kim ES; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8427-31. PubMed ID: 25958540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotube Nucleation Phenomena of Titanium Dioxide on the Ti-6Al-4V Alloy Using Anodic Titanium Oxide Technique.
    Kim HJ; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):467-70. PubMed ID: 26328383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface morphology of highly ordered nanotube formed and laser textured beta titanium alloys.
    Kim JU; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1876-9. PubMed ID: 23755610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface morphology of nanotube formed Ti alloy by electrochemical methods.
    Kim SH; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8372-6. PubMed ID: 25958530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on the Microstructure and Mechanical Properties of the Ti-Ta Alloy with Unmelted Ta Particles by Laser Powder Bed Fusion.
    Gao M; He D; Cui L; Ma L; Tan Z; Zhou Z; Guo X
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese Coatings on Hydroxyapatite-Deposited Ti–29Nb–xHf Alloys After Nanomesh Formation.
    Park SY; Choe HH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2661-665. PubMed ID: 29664264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotubular Structure on the Ti-29Nb-5Zr Alloy by Scanning Transmission Electron Microscope.
    Kim EJ; Jeong YH; Kang BA; Choe HC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):595-9. PubMed ID: 26328410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sintering Analysis of Porous Ti/xTa Alloys Fabricated from Elemental Powders.
    Macias R; Garnica-Gonzalez P; Olmos L; Jimenez O; Chavez J; Vazquez O; Alvarado-Hernandez F; Arteaga D
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotube morphology and corrosion resistance of a low rigidity quaternary titanium alloy for biomedical applications.
    Saji VS; Choe HC; Ko YM; Ahn H
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4635-9. PubMed ID: 21128470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.