These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 32331279)
1. Impact of Uniaxial Stretching on Both Gliding and Traction Areas of Tendon Explants in a Novel Bioreactor. Tohidnezhad M; Zander J; Slowik A; Kubo Y; Dursun G; Willenberg W; Zendedel A; Kweider N; Stoffel M; Pufe T Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32331279 [TBL] [Abstract][Full Text] [Related]
2. Molecular interactions in extracellular matrix of tendon. Karousou E; Ronga M; Vigetti D; Barcolli D; Passi A; Maffulli N Front Biosci (Elite Ed); 2010 Jan; 2(1):1-12. PubMed ID: 20036847 [TBL] [Abstract][Full Text] [Related]
3. Stochastic amplitude-modulated stretching of rabbit flexor digitorum profundus tendons reduces stiffness compared to cyclic loading but does not affect tenocyte metabolism. Steiner TH; Bürki A; Ferguson SJ; Gantenbein-Ritter B BMC Musculoskelet Disord; 2012 Nov; 13():222. PubMed ID: 23150982 [TBL] [Abstract][Full Text] [Related]
4. Applying a Three-dimensional Uniaxial Mechanical Stimulation Bioreactor System to Induce Tenogenic Differentiation of Tendon-Derived Stem Cells. Chen Z; Chen P; Ruan R; Chen L; Yuan J; Wood D; Wang T; Zheng MH J Vis Exp; 2020 Aug; (162):. PubMed ID: 32804168 [TBL] [Abstract][Full Text] [Related]
5. In Vivo and In Vitro Mechanical Loading of Mouse Achilles Tendons and Tenocytes-A Pilot Study. Fleischhacker V; Klatte-Schulz F; Minkwitz S; Schmock A; Rummler M; Seliger A; Willie BM; Wildemann B Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32075290 [TBL] [Abstract][Full Text] [Related]
6. Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor. Youngstrom DW; LaDow JE; Barrett JG Connect Tissue Res; 2016 Nov; 57(6):454-465. PubMed ID: 27028488 [TBL] [Abstract][Full Text] [Related]
7. Inflammatory cells do not decrease the ultimate tensile strength of intact tendons in vivo and in vitro: protective role of mechanical loading. Marsolais D; Duchesne E; Côté CH; Frenette J J Appl Physiol (1985); 2007 Jan; 102(1):11-7. PubMed ID: 16916923 [TBL] [Abstract][Full Text] [Related]
8. Treatment of partial lacerations in flexor tendons by trimming. A biomechanical in vitro study. Erhard L; Zobitz ME; Zhao C; Amadio PC; An KN J Bone Joint Surg Am; 2002 Jun; 84(6):1006-12. PubMed ID: 12063336 [TBL] [Abstract][Full Text] [Related]
9. Gliding resistance of extrasynovial and intrasynovial tendons through the A2 pulley. Uchiyama S; Amadio PC; Coert JH; Berglund LJ; An KN J Bone Joint Surg Am; 1997 Feb; 79(2):219-24. PubMed ID: 9052543 [TBL] [Abstract][Full Text] [Related]
10. Tendon tissue microdamage and the limits of intrinsic repair. Stauber T; Blache U; Snedeker JG Matrix Biol; 2020 Jan; 85-86():68-79. PubMed ID: 31325483 [TBL] [Abstract][Full Text] [Related]
11. Distributing a fixed amount of cyclic loading to tendon explants over longer periods induces greater cellular and mechanical responses. Devkota AC; Tsuzaki M; Almekinders LC; Banes AJ; Weinhold PS J Orthop Res; 2007 Aug; 25(8):1078-86. PubMed ID: 17457818 [TBL] [Abstract][Full Text] [Related]
12. Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor. Riboh J; Chong AK; Pham H; Longaker M; Jacobs C; Chang J J Hand Surg Am; 2008 Oct; 33(8):1388-96. PubMed ID: 18929207 [TBL] [Abstract][Full Text] [Related]
13. Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. Archambault J; Tsuzaki M; Herzog W; Banes AJ J Orthop Res; 2002 Jan; 20(1):36-9. PubMed ID: 11853088 [TBL] [Abstract][Full Text] [Related]
14. Gliding function following flexor-tendon injury. A biomechanical study of rat tendon function. Lane JM; Black J; Bora FW J Bone Joint Surg Am; 1976 Oct; 58(7):985-90. PubMed ID: 977630 [TBL] [Abstract][Full Text] [Related]
15. Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Wang JH; Jia F; Yang G; Yang S; Campbell BH; Stone D; Woo SL Connect Tissue Res; 2003; 44(3-4):128-33. PubMed ID: 14504032 [TBL] [Abstract][Full Text] [Related]
16. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Kjaer M Physiol Rev; 2004 Apr; 84(2):649-98. PubMed ID: 15044685 [TBL] [Abstract][Full Text] [Related]
17. Effects of passive stretching on the biochemical and biomechanical properties of calcaneal tendon of rats. de Almeida FM; Tomiosso TC; Nakagaki WR; Gomes L; Matiello-Rosa SM; Pimentel ER Connect Tissue Res; 2009; 50(5):279-84. PubMed ID: 19863386 [TBL] [Abstract][Full Text] [Related]
18. Aging enhances a mechanically-induced reduction in tendon strength by an active process involving matrix metalloproteinase activity. Dudhia J; Scott CM; Draper ER; Heinegård D; Pitsillides AA; Smith RK Aging Cell; 2007 Aug; 6(4):547-56. PubMed ID: 17578513 [TBL] [Abstract][Full Text] [Related]
19. Simvastatin and atorvastatin reduce the mechanical properties of tendon constructs in vitro and introduce catabolic changes in the gene expression pattern. Eliasson P; Svensson RB; Giannopoulos A; Eismark C; Kjær M; Schjerling P; Heinemeier KM PLoS One; 2017; 12(3):e0172797. PubMed ID: 28264197 [TBL] [Abstract][Full Text] [Related]
20. Tendon healing affects the multiscale mechanical, structural and compositional response of tendon to quasi-static tensile loading. Freedman BR; Rodriguez AB; Hillin CD; Weiss SN; Han B; Han L; Soslowsky LJ J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29467258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]