BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 32331482)

  • 1. The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link.
    Amsalem Z; Arif T; Shteinfer-Kuzmine A; Chalifa-Caspi V; Shoshan-Barmatz V
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32331482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VDAC1 is a molecular target in glioblastoma, with its depletion leading to reprogrammed metabolism and reversed oncogenic properties.
    Arif T; Krelin Y; Nakdimon I; Benharroch D; Paul A; Dadon-Klein D; Shoshan-Barmatz V
    Neuro Oncol; 2017 Jul; 19(7):951-964. PubMed ID: 28339833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria and nucleus cross-talk: Signaling in metabolism, apoptosis, and differentiation, and function in cancer.
    Shteinfer-Kuzmine A; Verma A; Arif T; Aizenberg O; Paul A; Shoshan-Barmaz V
    IUBMB Life; 2021 Mar; 73(3):492-510. PubMed ID: 33179373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Reprograming Via Silencing of Mitochondrial VDAC1 Expression Encourages Differentiation of Cancer Cells.
    Arif T; Amsalem Z; Shoshan-Barmatz V
    Mol Ther Nucleic Acids; 2019 Sep; 17():24-37. PubMed ID: 31195298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial VDAC1 Silencing Leads to Metabolic Rewiring and the Reprogramming of Tumour Cells into Advanced Differentiated States.
    Arif T; Paul A; Krelin Y; Shteinfer-Kuzmine A; Shoshan-Barmatz V
    Cancers (Basel); 2018 Dec; 10(12):. PubMed ID: 30544833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing VDAC1 expression induces a non-apoptotic role for pro-apoptotic proteins in cancer cell differentiation.
    Arif T; Krelin Y; Shoshan-Barmatz V
    Biochim Biophys Acta; 2016 Aug; 1857(8):1228-1242. PubMed ID: 27080741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept.
    Arif T; Stern O; Pittala S; Chalifa-Caspi V; Shoshan-Barmatz V
    Cells; 2019 Oct; 8(11):. PubMed ID: 31661894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mitochondrial voltage-dependent anion channel 1 in tumor cells.
    Shoshan-Barmatz V; Ben-Hail D; Admoni L; Krelin Y; Tripathi SS
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2547-75. PubMed ID: 25448878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma.
    Shteinfer-Kuzmine A; Arif T; Krelin Y; Tripathi SS; Paul A; Shoshan-Barmatz V
    Oncotarget; 2017 May; 8(19):31329-31346. PubMed ID: 28412744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and epigenetics: a link cancer cells exploit.
    Carrer A; Wellen KE
    Curr Opin Biotechnol; 2015 Aug; 34():23-9. PubMed ID: 25461508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VDAC1 Silencing in Cancer Cells Leads to Metabolic Reprogramming That Modulates Tumor Microenvironment.
    Zerbib E; Arif T; Shteinfer-Kuzmine A; Chalifa-Caspi V; Shoshan-Barmatz V
    Cancers (Basel); 2021 Jun; 13(11):. PubMed ID: 34200480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks.
    Pandey SK; Machlof-Cohen R; Santhanam M; Shteinfer-Kuzmine A; Shoshan-Barmatz V
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress.
    Shoshan-Barmatz V; Maldonado EN; Krelin Y
    Cell Stress; 2017 Oct; 1(1):11-36. PubMed ID: 30542671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics.
    Shoshan-Barmatz V; Krelin Y; Shteinfer-Kuzmine A; Arif T
    Front Oncol; 2017; 7():154. PubMed ID: 28824871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy.
    Shteinfer-Kuzmine A; Amsalem Z; Arif T; Zooravlov A; Shoshan-Barmatz V
    Mol Oncol; 2018 Jun; 12(7):1077-1103. PubMed ID: 29698587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo.
    Arif T; Vasilkovsky L; Refaely Y; Konson A; Shoshan-Barmatz V
    Mol Ther Nucleic Acids; 2014 Apr; 3(4):e159. PubMed ID: 24781191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metformin targets histone acetylation in cancer-prone epithelial cells.
    Cuyàs E; Fernández-Arroyo S; Joven J; Menendez JA
    Cell Cycle; 2016 Dec; 15(24):3355-3361. PubMed ID: 27792453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockout of Vdac1 activates hypoxia-inducible factor through reactive oxygen species generation and induces tumor growth by promoting metabolic reprogramming and inflammation.
    Brahimi-Horn MC; Giuliano S; Saland E; Lacas-Gervais S; Sheiko T; Pelletier J; Bourget I; Bost F; Féral C; Boulter E; Tauc M; Ivan M; Garmy-Susini B; Popa A; Mari B; Sarry JE; Craigen WJ; Pouysségur J; Mazure NM
    Cancer Metab; 2015; 3():8. PubMed ID: 26322231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the interplay between metabolism and epigenetics in cancer.
    Montellier E; Gaucher J
    Curr Opin Oncol; 2019 Mar; 31(2):92-99. PubMed ID: 30562315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VDAC1 functions in Ca
    Shoshan-Barmatz V; Krelin Y; Shteinfer-Kuzmine A
    Cell Calcium; 2018 Jan; 69():81-100. PubMed ID: 28712506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.