These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32331538)

  • 1. Learning (from) the Electron Density: Transferability, Conformational and Chemical Diversity.
    Fabrizio A; Briling K; Grisafi A; Corminboeuf C
    Chimia (Aarau); 2020 Apr; 74(4):232-236. PubMed ID: 32331538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical Model of Electron Density and Its Machine Learning Inference.
    Cuevas-Zuviría B; Pacios LF
    J Chem Inf Model; 2020 Aug; 60(8):3831-3842. PubMed ID: 32786704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.
    Grisafi A; Wilkins DM; Csányi G; Ceriotti M
    Phys Rev Lett; 2018 Jan; 120(3):036002. PubMed ID: 29400528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features.
    Qiao Z; Welborn M; Anandkumar A; Manby FR; Miller TF
    J Chem Phys; 2020 Sep; 153(12):124111. PubMed ID: 33003742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.
    Ramakrishnan R; Dral PO; Rupp M; von Lilienfeld OA
    J Chem Theory Comput; 2015 May; 11(5):2087-96. PubMed ID: 26574412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning model for non-equilibrium structures and energies of simple molecules.
    Iype E; Urolagin S
    J Chem Phys; 2019 Jan; 150(2):024307. PubMed ID: 30646726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedded correlated wavefunction schemes: theory and applications.
    Libisch F; Huang C; Carter EA
    Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules.
    Cheng L; Welborn M; Christensen AS; Miller TF
    J Chem Phys; 2019 Apr; 150(13):131103. PubMed ID: 30954042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Electron Densities in the Condensed Phase.
    Lewis AM; Grisafi A; Ceriotti M; Rossi M
    J Chem Theory Comput; 2021 Nov; 17(11):7203-7214. PubMed ID: 34669406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum machine learning using atom-in-molecule-based fragments selected on the fly.
    Huang B; von Lilienfeld OA
    Nat Chem; 2020 Oct; 12(10):945-951. PubMed ID: 32929248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An atoms-in-molecules study of the genetically-encoded amino acids: I. Effects of conformation and of tautomerization on geometric, atomic, and bond properties.
    Matta CF; Bader RF
    Proteins; 2000 Aug; 40(2):310-29. PubMed ID: 10842344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning from the density to correct total energy and forces in first principle simulations.
    Dick S; Fernandez-Serra M
    J Chem Phys; 2019 Oct; 151(14):144102. PubMed ID: 31615245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape-activity relations.
    Mezey PG
    Acc Chem Res; 2014 Sep; 47(9):2821-7. PubMed ID: 25019572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Deep Field: Data-Driven Wave Function, Electron Density Generation, and Atomization Energy Prediction and Extrapolation with Machine Learning.
    Tsubaki M; Mizoguchi T
    Phys Rev Lett; 2020 Nov; 125(20):206401. PubMed ID: 33258648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.
    Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller KR; Tkatchenko A
    J Phys Chem Lett; 2015 Jun; 6(12):2326-31. PubMed ID: 26113956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning.
    Kranz JJ; Kubillus M; Ramakrishnan R; von Lilienfeld OA; Elstner M
    J Chem Theory Comput; 2018 May; 14(5):2341-2352. PubMed ID: 29579387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.