BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3233192)

  • 1. 2-octynoyl coenzyme A is a mechanism-based inhibitor of pig kidney medium-chain acyl coenzyme A dehydrogenase: isolation of the target peptide.
    Powell PJ; Thorpe C
    Biochemistry; 1988 Oct; 27(21):8022-8. PubMed ID: 3233192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of general acyl-CoA dehydrogenase from pig kidney by 2-alkynoyl coenzyme A derivatives: initial aspects.
    Freund K; Mizzer J; Dick W; Thorpe C
    Biochemistry; 1985 Oct; 24(21):5996-6002. PubMed ID: 4084503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of short-chain acyl-coenzyme A dehydrogenase from pig liver by 2-pentynoyl-coenzyme A.
    Lundberg NN; Thorpe C
    Arch Biochem Biophys; 1993 Sep; 305(2):454-9. PubMed ID: 8373183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-Methyleneoctanoyl-CoA and 3-methyl-trans-2-octenoyl-CoA: two new mechanism-based inhibitors of medium chain acyl-CoA dehydrogenase from pig kidney.
    Cummings JG; Thorpe C
    Biochemistry; 1994 Jan; 33(3):788-97. PubMed ID: 8292607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S-2-bromo-acyl-CoA analogues are affinity labels for the medium-chain acyl-CoA dehydrogenase from pig kidney.
    Haeffner-Gormley L; Cummings JG; Thorpe C
    Arch Biochem Biophys; 1995 Mar; 317(2):479-86. PubMed ID: 7893166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant human liver medium-chain acyl-CoA dehydrogenase: purification, characterization, and the mechanism of interactions with functionally diverse C8-CoA molecules.
    Peterson KL; Sergienko EE; Wu Y; Kumar NR; Strauss AW; Oleson AE; Muhonen WW; Shabb JB; Srivastava DK
    Biochemistry; 1995 Nov; 34(45):14942-53. PubMed ID: 7578106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of two-electron reduced medium chain acyl-CoA dehydrogenase by 2-octynoyl-CoA.
    Zhou JZ; Thorpe C
    Arch Biochem Biophys; 1989 Jun; 271(2):261-9. PubMed ID: 2567147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies with general acyl-CoA dehydrogenase from pig kidney. Inactivation by a novel type of "suicide" inhibitor, 3,4-pentadienoyl-CoA.
    Wenz A; Ghisla S; Thorpe C
    Eur J Biochem; 1985 Mar; 147(3):553-60. PubMed ID: 3838510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of 3,4-dienoyl-CoA thioesters with medium chain acyl-CoA dehydrogenase: stereochemistry of inactivation of a flavoenzyme.
    Wang W; Fu Z; Zhou JZ; Kim JJ; Thorpe C
    Biochemistry; 2001 Oct; 40(41):12266-75. PubMed ID: 11591145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of acyl coenzyme A substrates and analogues with pig kidney medium-chain acyl-coA dehydrogenase.
    Powell PJ; Lau SM; Killian D; Thorpe C
    Biochemistry; 1987 Jun; 26(12):3704-10. PubMed ID: 3651405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-activated inhibitors, alternate substrates, and a dead end inhibitor of the general acyl-CoA dehydrogenase.
    Frerman FE; Miziorko HM; Beckmann JD
    J Biol Chem; 1980 Dec; 255(23):11192-8. PubMed ID: 7440536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of excision of a methylene group from Glu-376 (Glu376-->Asp mutation) in the medium chain acyl-CoA dehydrogenase-catalyzed reaction.
    Peterson KL; Galitz DS; Srivastava DK
    Biochemistry; 1998 Feb; 37(6):1697-705. PubMed ID: 9484241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medium-chain acyl-CoA dehydrogenase- and enoyl-CoA hydratase-dependent bioactivation of 5,6-dichloro-4-thia-5-hexenoyl-CoA.
    Fitzsimmons ME; Thorpe C; Anders MW
    Biochemistry; 1995 Apr; 34(13):4276-86. PubMed ID: 7703241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medium-chain acyl coenzyme A dehydrogenase from pig kidney has intrinsic enoyl coenzyme A hydratase activity.
    Lau SM; Powell P; Buettner H; Ghisla S; Thorpe C
    Biochemistry; 1986 Jul; 25(15):4184-9. PubMed ID: 3756134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of an arginine residue in pig kidney general acyl-coenzyme A dehydrogenase by cyclohexane-1,2-dione.
    Jiang ZY; Thorpe C
    Biochem J; 1982 Dec; 207(3):415-9. PubMed ID: 7165702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective interaction of 2-halo-acyl-CoA derivatives with medium chain acyl-CoA dehydrogenase from pig kidney.
    Cummings JG; Thorpe C
    Arch Biochem Biophys; 1993 Apr; 302(1):85-91. PubMed ID: 8470910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of long-chain acyl-CoA analogs with pig kidney general acyl-CoA dehydrogenase.
    Thorpe C; Ciardelli TL; Stewart CJ; Wieland T
    Eur J Biochem; 1981 Aug; 118(2):279-82. PubMed ID: 7285923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4-Hydroxycinnamoyl-CoA: an ionizable probe of the active site of the medium chain acyl-CoA dehydrogenase.
    Rudik I; Bell A; Tonge PJ; Thorpe C
    Biochemistry; 2000 Jan; 39(1):92-101. PubMed ID: 10625483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative inactivation of a charge transfer complex in the medium-chain acyl-CoA dehydrogenase.
    Schaller RA; Thorpe C
    Biochemistry; 1995 Dec; 34(50):16424-32. PubMed ID: 8845370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive half-reaction in medium-chain acyl-CoA dehydrogenase: modulation of internal equilibrium by carboxymethylation of a specific methionine residue.
    Cummings JG; Lau SM; Powell PJ; Thorpe C
    Biochemistry; 1992 Sep; 31(36):8523-9. PubMed ID: 1390638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.