BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 3233264)

  • 1. Stability of mixed micellar bile models supersaturated with cholesterol.
    Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Kalina M; Peled Y; Halpern Z
    Biophys J; 1988 Dec; 54(6):1013-25. PubMed ID: 3233264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts.
    Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Peled Y; Halpern Z
    Hepatology; 1990 Sep; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles.
    Almog S; Kushnir T; Nir S; Lichtenberg D
    Biochemistry; 1986 May; 25(9):2597-605. PubMed ID: 3718967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of calcium on kinetic and structural aspects of dilution-induced micellar to lamellar phase transformation in phosphatidylcholine-cholate mixtures.
    Almog S; Lichtenberg D
    Biochemistry; 1988 Feb; 27(3):873-80. PubMed ID: 3365368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of albumin on the state of aggregation and phase transformations in phosphatidylcholine-sodium cholate mixtures.
    Meyuhas D; Lichtenberg D
    Biochim Biophys Acta; 1995 Mar; 1234(2):203-13. PubMed ID: 7696295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical stability of teniposide in bile salt-egg phosphatidylcholine mixed micelles and liposomes.
    Son K; Alkan-Onyuksel H
    PDA J Pharm Sci Technol; 1996; 50(2):89-93. PubMed ID: 8935776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man.
    Carey MC; Small DM
    J Clin Invest; 1978 Apr; 61(4):998-1026. PubMed ID: 659586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol precipitation from cholesterol-supersaturated bile models.
    Fudim-Levin E; Bor A; Kaplun A; Talmon Y; Lichtenberg D
    Biochim Biophys Acta; 1995 Oct; 1259(1):23-8. PubMed ID: 7492611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate separation of biliary lipid aggregates requires the correct intermixed micellar/intervesicular bile salt concentration.
    Donovan JM; Jackson AA
    Hepatology; 1998 Mar; 27(3):641-8. PubMed ID: 9500688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile.
    Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC
    Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of phosphatidylcholine in phosphatidylcholine-cholate mixtures by porcine pancreatic phospholipase A2.
    Gheriani-Gruszka N; Almog S; Biltonen RL; Lichtenberg D
    J Biol Chem; 1988 Aug; 263(24):11808-13. PubMed ID: 3403556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile.
    Donovan JM; Timofeyeva N; Carey MC
    J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and quantitation of cholesterol "carriers" in bile.
    Donovan JM; Carey MC
    Hepatology; 1990 Sep; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate.
    Schubert R; Beyer K; Wolburg H; Schmidt KH
    Biochemistry; 1986 Sep; 25(18):5263-9. PubMed ID: 2429697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bile salt-induced cholesterol crystal formation from model bile vesicles: a time course study.
    van de Heijning BJ; Stolk MF; van Erpecum KJ; Renooij W; Groen AK; vanBerge-Henegouwen GP
    J Lipid Res; 1994 Jun; 35(6):1002-11. PubMed ID: 8077840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions.
    Mazer NA; Carey MC
    Biochemistry; 1983 Jan; 22(2):426-42. PubMed ID: 6824637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous bile salt-lecithin-cholesterol systems: equilibrium aspects.
    Carey MC
    Hepatology; 1984; 4(5 Suppl):151S-154S. PubMed ID: 6479872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation.
    Cohen DE; Angelico M; Carey MC
    J Lipid Res; 1990 Jan; 31(1):55-70. PubMed ID: 2313205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatidylcholine as substrate for human pancreatic phospholipase A2. Importance of the physical state of the substrate.
    Borgström B
    Lipids; 1993 May; 28(5):371-5. PubMed ID: 8316043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.