These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 3233266)

  • 61. Transmural gradients of myocardial structure and mechanics: Implications for fiber stress and strain in pressure overload.
    Carruth ED; McCulloch AD; Omens JH
    Prog Biophys Mol Biol; 2016 Dec; 122(3):215-226. PubMed ID: 27845176
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Relaxing ventricle performs more external mechanical work than quickly released elastic energy.
    Suga H
    Eur Heart J; 1980; Suppl A():131-7. PubMed ID: 7274223
    [No Abstract]   [Full Text] [Related]  

  • 63. Plane-strain finite-element analysis of reconstructed diastolic left ventricular cross section.
    Pao YC; Robb RA; Ritman EL
    Ann Biomed Eng; 1976 Sep; 4(3):232-49. PubMed ID: 984531
    [No Abstract]   [Full Text] [Related]  

  • 64. Elastic modulus of the human intact left ventricle--determination and physiological interpretation.
    Ghista DN; Sandler H; Vayo WH
    Med Biol Eng; 1975 Mar; 13(2):151-61. PubMed ID: 1195804
    [No Abstract]   [Full Text] [Related]  

  • 65. A micro-anatomical model of the distribution of myocardial endomysial collagen.
    Macchiarelli G; Ohtani O; Nottola SA; Stallone T; Camboni A; Prado IM; Motta PM
    Histol Histopathol; 2002; 17(3):699-706. PubMed ID: 12168777
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of inertia and viscoelasticity in late rapid filling of the left ventricle.
    Moskowitz SE
    J Biomech; 1981; 14(6):443-5. PubMed ID: 7263739
    [No Abstract]   [Full Text] [Related]  

  • 67. Fiber orientation in the canine left ventricle during diastole and systole.
    Streeter DD; Spotnitz HM; Patel DP; Ross J; Sonnenblick EH
    Circ Res; 1969 Mar; 24(3):339-47. PubMed ID: 5766515
    [No Abstract]   [Full Text] [Related]  

  • 68. Myocardial constitutive laws for continuum mechanics models of the heart.
    Hunter PJ
    Adv Exp Med Biol; 1995; 382():303-18. PubMed ID: 8540408
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cardiac dilatation associated with collagen alterations.
    Caulfield JB; Norton P; Weaver RD
    Mol Cell Biochem; 1992 Dec; 118(2):171-9. PubMed ID: 1293511
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues.
    Lanir Y
    J Biomech; 1979; 12(6):423-36. PubMed ID: 457696
    [No Abstract]   [Full Text] [Related]  

  • 71. On a nonlinear theory for muscle shells: Part II--Application to the beating left ventricle.
    Taber LA
    J Biomech Eng; 1991 Feb; 113(1):63-71. PubMed ID: 2020177
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading.
    Yin FC; Strumpf RK; Chew PH; Zeger SL
    J Biomech; 1987; 20(6):577-89. PubMed ID: 3611134
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stress-dependent finite growth in soft elastic tissues.
    Rodriguez EK; Hoger A; McCulloch AD
    J Biomech; 1994 Apr; 27(4):455-67. PubMed ID: 8188726
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Active and passive stresses in the myocardium.
    Shoucri RM
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2519-28. PubMed ID: 11045990
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fiber orientation and ejection fraction in the human left ventricle.
    Sallin EA
    Biophys J; 1969 Jul; 9(7):954-64. PubMed ID: 5791550
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Physiological basis for mechanical time-variance in the heart: special consideration of non-linear function.
    Drzewiecki GM; Karam E; Welkowitz W
    J Theor Biol; 1989 Aug; 139(4):465-86. PubMed ID: 2615383
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A concentric layer model for estimating the energy expenditure of the left ventricle.
    Wong AY
    Bull Math Biophys; 1970 Dec; 32(4):581-98. PubMed ID: 5513394
    [No Abstract]   [Full Text] [Related]  

  • 78. Comparison of Biomechanical Properties and Microstructure of Trabeculae Carneae, Papillary Muscles, and Myocardium in the Human Heart.
    Fatemifar F; Feldman MD; Oglesby M; Han HC
    J Biomech Eng; 2019 Feb; 141(2):0210071-02100710. PubMed ID: 30418486
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comprehensive model for the simulation of left ventricle mechanics. Part 2. Implementation and results analysis.
    Horowitz A; Perl M; Sideman S; Ritman E
    Med Biol Eng Comput; 1986 Mar; 24(2):150-6. PubMed ID: 3713276
    [No Abstract]   [Full Text] [Related]  

  • 80. Structural three-dimensional constitutive law for the passive myocardium.
    Horowitz A; Lanir Y; Yin FC; Perl M; Sheinman I; Strumpf RK
    J Biomech Eng; 1988 Aug; 110(3):200-7. PubMed ID: 3172739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.