These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 32332710)
1. Power laws in pressure-induced structural change of glasses. Zhang H; Qiao K; Han Y Nat Commun; 2020 Apr; 11(1):2005. PubMed ID: 32332710 [TBL] [Abstract][Full Text] [Related]
2. General 2.5 power law of metallic glasses. Zeng Q; Lin Y; Liu Y; Zeng Z; Shi CY; Zhang B; Lou H; Sinogeikin SV; Kono Y; Kenney-Benson C; Park C; Yang W; Wang W; Sheng H; Mao HK; Mao WL Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1714-8. PubMed ID: 26831105 [TBL] [Abstract][Full Text] [Related]
3. Universal fractional noncubic power law for density of metallic glasses. Zeng Q; Kono Y; Lin Y; Zeng Z; Wang J; Sinogeikin SV; Park C; Meng Y; Yang W; Mao HK; Mao WL Phys Rev Lett; 2014 May; 112(18):185502. PubMed ID: 24856706 [TBL] [Abstract][Full Text] [Related]
4. Master crossover behavior of parachor correlations for one-component fluids. Garrabos Y; Palencia F; Lecoutre C; Broseta D; Le Neindre B Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061109. PubMed ID: 18233816 [TBL] [Abstract][Full Text] [Related]
5. Local thermal energy as a structural indicator in glasses. Zylberg J; Lerner E; Bar-Sinai Y; Bouchbinder E Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7289-7294. PubMed ID: 28655846 [TBL] [Abstract][Full Text] [Related]
6. Critical behavior near the reversible-irreversible transition in periodically driven vortices under random local shear. Maegochi S; Ienaga K; Kaneko S; Okuma S Sci Rep; 2019 Nov; 9(1):16447. PubMed ID: 31712623 [TBL] [Abstract][Full Text] [Related]
7. Behavior of sodium borosilicate glasses under compression using molecular dynamics. Kilymis DA; Delaye JM; Ispas S J Chem Phys; 2015 Sep; 143(9):094503. PubMed ID: 26342373 [TBL] [Abstract][Full Text] [Related]
8. Characterization of tunneling systems in molecular versus polymer glasses by high-pressure photon echo spectroscopy. McIntire MJ; Chronister EL J Chem Phys; 2006 Jan; 124(1):14904. PubMed ID: 16409060 [TBL] [Abstract][Full Text] [Related]
9. Glass transitions in one-, two-, three-, and four-dimensional binary Lennard-Jones systems. Brüning R; St-Onge DA; Patterson S; Kob W J Phys Condens Matter; 2009 Jan; 21(3):035117. PubMed ID: 21817275 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional structure of multicomponent (Na₂O)0.₃₅ [(P₂O₅)₁- x(B₂O₃)x]0.₆₅ glasses by high-energy x-ray diffraction and constrained reverse Monte Carlo simulations. Roux SL; Martin S; Christensen R; Ren Y; Petkov V J Phys Condens Matter; 2011 Jan; 23(3):035403. PubMed ID: 21406865 [TBL] [Abstract][Full Text] [Related]
11. Probing the non-Debye low-frequency excitations in glasses through random pinning. Angelani L; Paoluzzi M; Parisi G; Ruocco G Proc Natl Acad Sci U S A; 2018 Aug; 115(35):8700-8704. PubMed ID: 30104381 [TBL] [Abstract][Full Text] [Related]
12. More current with less particles due to power-law hopping. Saha M; Purkayastha A; Maiti SK J Phys Condens Matter; 2020 Jan; 32(2):025303. PubMed ID: 31519006 [TBL] [Abstract][Full Text] [Related]
13. Identifying and characterising the different structural length scales in liquids and glasses: an experimental approach. Salmon PS; Zeidler A Phys Chem Chem Phys; 2013 Oct; 15(37):15286-308. PubMed ID: 23938952 [TBL] [Abstract][Full Text] [Related]
14. Establishing the structure of GeS(2) at high pressures and temperatures: a combined approach using x-ray and neutron diffraction. Zeidler A; Drewitt JW; Salmon PS; Barnes AC; Crichton WA; Klotz S; Fischer HE; Benmore CJ; Ramos S; Hannon AC J Phys Condens Matter; 2009 Nov; 21(47):474217. PubMed ID: 21832496 [TBL] [Abstract][Full Text] [Related]
15. Absence of 2.5 power law for fractal packing in metallic glasses. Feng J; Chen P; Li M J Phys Condens Matter; 2018 Jun; 30(25):255402. PubMed ID: 29757165 [TBL] [Abstract][Full Text] [Related]
16. Dynamics and correlation length scales of a glass-forming liquid in quiescent and sheared conditions. Xu WS; Sun ZY; An LJ J Phys Condens Matter; 2012 Aug; 24(32):325101, 1-11. PubMed ID: 22647845 [TBL] [Abstract][Full Text] [Related]
17. Fractal Dimension of Interfaces in Edwards-Anderson and Long-range Ising Spin Glasses: Determining the Applicability of Different Theoretical Descriptions. Wang W; Moore MA; Katzgraber HG Phys Rev Lett; 2017 Sep; 119(10):100602. PubMed ID: 28949153 [TBL] [Abstract][Full Text] [Related]
18. Pinching a glass reveals key properties of its soft spots. Rainone C; Bouchbinder E; Lerner E Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5228-5234. PubMed ID: 32094180 [TBL] [Abstract][Full Text] [Related]
19. Universality of the Nonphononic Vibrational Spectrum across Different Classes of Computer Glasses. Richard D; González-López K; Kapteijns G; Pater R; Vaknin T; Bouchbinder E; Lerner E Phys Rev Lett; 2020 Aug; 125(8):085502. PubMed ID: 32909789 [TBL] [Abstract][Full Text] [Related]
20. Dynamical susceptibility of glass formers: contrasting the predictions of theoretical scenarios. Toninelli C; Wyart M; Berthier L; Biroli G; Bouchaud JP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041505. PubMed ID: 15903675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]