BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32333052)

  • 1. Bio-production of high-purity propionate by engineering L-threonine degradation pathway in Pseudomonas putida.
    Ma C; Mu Q; Wang L; Shi Y; Zhu L; Zhang S; Xue Y; Tao Y; Ma Y; Yu B
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5303-5313. PubMed ID: 32333052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Propionate by a Sequential Fermentation-Biotransformation Process via l-Threonine.
    Mu Q; Shi Y; Li R; Ma C; Tao Y; Yu B
    J Agric Food Chem; 2021 Nov; 69(46):13895-13903. PubMed ID: 34757739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Yield Production of Propionate from 1,2-Propanediol by Engineered
    Shi Y; Li R; Zheng J; Xue Y; Tao Y; Yu B
    J Agric Food Chem; 2022 Dec; 70(51):16263-16272. PubMed ID: 36511719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioproduction of propionic acid using levulinic acid by engineered
    Tiwari R; Sathesh-Prabu C; Lee SK
    Front Bioeng Biotechnol; 2022; 10():939248. PubMed ID: 36032729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.
    Graf N; Altenbuchner J
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):137-49. PubMed ID: 24136472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling the thioesterases responsible for propionate formation in engineered Pseudomonas putida KT2440.
    Ma C; Shi Y; Mu Q; Li R; Xue Y; Yu B
    Microb Biotechnol; 2021 May; 14(3):1237-1242. PubMed ID: 33739583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
    Yang S; Li S; Jia X
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved terephthalic acid production from p-xylene using metabolically engineered Pseudomonas putida.
    Luo ZW; Choi KR; Lee SY
    Metab Eng; 2023 Mar; 76():75-86. PubMed ID: 36693471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440.
    Bentley GJ; Narayanan N; Jha RK; SalvachĂșa D; Elmore JR; Peabody GL; Black BA; Ramirez K; De Capite A; Michener WE; Werner AZ; Klingeman DM; Schindel HS; Nelson R; Foust L; Guss AM; Dale T; Johnson CW; Beckham GT
    Metab Eng; 2020 May; 59():64-75. PubMed ID: 31931111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One major facilitator superfamily transporter is responsible for propionic acid tolerance in Pseudomonas putida KT2440.
    Ma C; Mu Q; Xue Y; Xue Y; Yu B; Ma Y
    Microb Biotechnol; 2021 Mar; 14(2):386-391. PubMed ID: 32476222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid.
    Li J; Ye BC
    Bioresour Technol; 2021 Jan; 319():124239. PubMed ID: 33254462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions.
    Ding W; Meng Q; Dong G; Qi N; Zhao H; Shi S
    Biotechnol J; 2022 Mar; 17(3):e2100579. PubMed ID: 35086163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440.
    Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J
    Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane.
    Gong T; Xu X; Che Y; Liu R; Gao W; Zhao F; Yu H; Liang J; Xu P; Song C; Yang C
    Sci Rep; 2017 Aug; 7(1):7064. PubMed ID: 28765600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broad-Host-Range ProUSER Vectors Enable Fast Characterization of Inducible Promoters and Optimization of p-Coumaric Acid Production in Pseudomonas putida KT2440.
    Calero P; Jensen SI; Nielsen AT
    ACS Synth Biol; 2016 Jul; 5(7):741-53. PubMed ID: 27092814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii.
    Guan N; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol Bioeng; 2016 Jun; 113(6):1294-304. PubMed ID: 26666200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production.
    Yang J; Son JH; Kim H; Cho S; Na JG; Yeon YJ; Lee J
    Microb Cell Fact; 2019 Oct; 18(1):168. PubMed ID: 31601210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-upgrading of ethanol to fatty acid ethyl esters by metabolic engineering of Pseudomonas putida KT2440.
    Sarwar A; Nguyen LT; Lee EY
    Bioresour Technol; 2022 Apr; 350():126899. PubMed ID: 35217159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Pseudomonas putida KT2440 for medium-chain-length fatty alcohol and ester production from fatty acids.
    Lu C; Akwafo EO; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    Metab Eng; 2023 Jan; 75():110-118. PubMed ID: 36494025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.