These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 32333191)
1. Production of multi-petaled Torenia fournieri flowers by functional disruption of two class-C MADS-box genes. Sasaki K; Ohtsubo N Planta; 2020 Apr; 251(5):101. PubMed ID: 32333191 [TBL] [Abstract][Full Text] [Related]
2. Ectopic expression of AtNF-YA6-VP16 in petals results in a novel petal phenotype in Torenia fournieri. Sekiguchi N; Sasaki K; Oshima Y; Mitsuda N Planta; 2022 Apr; 255(5):105. PubMed ID: 35429252 [TBL] [Abstract][Full Text] [Related]
3. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation. Sasaki K; Yamaguchi H; Aida R; Shikata M; Abe T; Ohtsubo N Plant J; 2012 Sep; 71(6):1002-14. PubMed ID: 22577962 [TBL] [Abstract][Full Text] [Related]
4. Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture. Sasaki K; Yamaguchi H; Nakayama M; Aida R; Ohtsubo N Plant Mol Biol; 2014 Oct; 86(3):319-34. PubMed ID: 25082268 [TBL] [Abstract][Full Text] [Related]
5. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. Nishihara M; Higuchi A; Watanabe A; Tasaki K BMC Plant Biol; 2018 Dec; 18(1):331. PubMed ID: 30518324 [TBL] [Abstract][Full Text] [Related]
6. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Liu Z; Zhang D; Liu D; Li F; Lu H Plant Cell Rep; 2013 Feb; 32(2):227-37. PubMed ID: 23096754 [TBL] [Abstract][Full Text] [Related]
7. Production of petaloid phenotype in the reproductive organs of compound flowerheads by the co-suppression of class-C genes in hexaploid Chrysanthemum morifolium. Sasaki K; Yoshioka S; Aida R; Ohtsubo N Planta; 2021 Apr; 253(5):100. PubMed ID: 33847818 [TBL] [Abstract][Full Text] [Related]
8. Multiple and integrated functions of floral C-class MADS-box genes in flower and fruit development of Physalis floridana. Zhao J; Gong P; Liu H; Zhang M; He C Plant Mol Biol; 2021 Sep; 107(1-2):101-116. PubMed ID: 34424500 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. Nakatsuka T; Saito M; Yamada E; Fujita K; Yamagishi N; Yoshikawa N; Nishihara M BMC Plant Biol; 2015 Jul; 15():182. PubMed ID: 26183329 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of duplicated B-class MADS-box genes in Japanese gentian. Nakatsuka T; Saito M; Nishihara M Plant Cell Rep; 2016 Apr; 35(4):895-904. PubMed ID: 26769577 [TBL] [Abstract][Full Text] [Related]
11. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. Huang F; Xu G; Chi Y; Liu H; Xue Q; Zhao T; Gai J; Yu D BMC Plant Biol; 2014 Apr; 14():89. PubMed ID: 24693922 [TBL] [Abstract][Full Text] [Related]
12. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae). Zhang B; Liu ZX; Ma J; Song Y; Chen FJ Plant Sci; 2015 Dec; 241():277-85. PubMed ID: 26706078 [TBL] [Abstract][Full Text] [Related]
13. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Hsu HF; Hsieh WP; Chen MK; Chang YY; Yang CH Plant Cell Physiol; 2010 Jun; 51(6):1029-45. PubMed ID: 20395287 [TBL] [Abstract][Full Text] [Related]
14. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Mizukami Y; Ma H Plant Mol Biol; 1995 Aug; 28(5):767-84. PubMed ID: 7640351 [TBL] [Abstract][Full Text] [Related]
15. TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Gimenez E; CastaƱeda L; Pineda B; Pan IL; Moreno V; Angosto T; Lozano R Plant Mol Biol; 2016 Jul; 91(4-5):513-31. PubMed ID: 27125648 [TBL] [Abstract][Full Text] [Related]
16. Flower development in Coffea arabica L.: new insights into MADS-box genes. de Oliveira RR; Cesarino I; Mazzafera P; Dornelas MC Plant Reprod; 2014 Jun; 27(2):79-94. PubMed ID: 24715004 [TBL] [Abstract][Full Text] [Related]
17. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. Sun W; Huang W; Li Z; Song C; Liu D; Liu Y; Hayward A; Liu Y; Huang H; Wang Y Ann Bot; 2014 Mar; 113(4):653-68. PubMed ID: 24532606 [TBL] [Abstract][Full Text] [Related]
18. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Tzeng TY; Chen HY; Yang CH Plant Physiol; 2002 Dec; 130(4):1827-36. PubMed ID: 12481066 [TBL] [Abstract][Full Text] [Related]
19. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Tanaka Y; Oshima Y; Yamamura T; Sugiyama M; Mitsuda N; Ohtsubo N; Ohme-Takagi M; Terakawa T Sci Rep; 2013; 3():2641. PubMed ID: 24026510 [TBL] [Abstract][Full Text] [Related]
20. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Yamaguchi T; Lee DY; Miyao A; Hirochika H; An G; Hirano HY Plant Cell; 2006 Jan; 18(1):15-28. PubMed ID: 16326928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]