BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32333351)

  • 1. Light electric vehicle charging strategy for low impact on the grid.
    Bastida-Molina P; Hurtado-Pérez E; Pérez-Navarro Á; Alfonso-Solar D
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):18790-18806. PubMed ID: 32333351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marginal Greenhouse Gas Emissions of Ontario's Electricity System and the Implications of Electric Vehicle Charging.
    Gai Y; Wang A; Pereira L; Hatzopoulou M; Posen ID
    Environ Sci Technol; 2019 Jul; 53(13):7903-7912. PubMed ID: 31244061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hourly Power Grid Variations, Electric Vehicle Charging Patterns, and Operating Emissions.
    Miller I; Arbabzadeh M; Gençer E
    Environ Sci Technol; 2020 Dec; 54(24):16071-16085. PubMed ID: 33241682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A scenario-based approach to predict energy demand and carbon emission of electric vehicles on the electric grid.
    Cheung WM
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77300-77310. PubMed ID: 35676573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles.
    Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA
    Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Climate Impact Variations Due to Fueling Behavior of Plug-in Hybrid Vehicle Owners in the US.
    Wolfram P; Hertwich EG
    Environ Sci Technol; 2021 Jan; 55(1):65-72. PubMed ID: 33327721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy, Emissions, and Cost Impacts of Charging Price Strategies for Electric Vehicles.
    Li X; Jenn A
    Environ Sci Technol; 2022 May; 56(9):5724-5733. PubMed ID: 35418227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis.
    Zheng Y; Li S; Xu S
    PLoS One; 2019; 14(9):e0222448. PubMed ID: 31525217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon emission of energy consumption of the electric vehicle development scenario.
    Wang M; Wang Y; Chen L; Yang Y; Li X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42401-42413. PubMed ID: 33813710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential impacts of electric vehicles on air quality in Taiwan.
    Li N; Chen JP; Tsai IC; He Q; Chi SY; Lin YC; Fu TM
    Sci Total Environ; 2016 Oct; 566-567():919-928. PubMed ID: 27285533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
    Choi DG; Kreikebaum F; Thomas VM; Divan D
    Environ Sci Technol; 2013 Sep; 47(18):10703-7. PubMed ID: 23875888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas implications of fleet electrification based on big data-informed individual travel patterns.
    Cai H; Xu M
    Environ Sci Technol; 2013 Aug; 47(16):9035-43. PubMed ID: 23869607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic feasibility analysis for an electric public transportation system: Two cases of study in medium sized cities in Mexico.
    Sánchez JT; Del Río JA; Sánchez A
    PLoS One; 2022; 17(8):e0272363. PubMed ID: 35925938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the European Electric-Mobility Transition: Emissions from Electric Vehicle Manufacturing and Use in Relation to the EU Greenhouse Gas Emission Targets.
    Tang C; Tukker A; Sprecher B; Mogollón JM
    Environ Sci Technol; 2023 Jan; 57(1):44-52. PubMed ID: 36574507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation and modeling of electric vehicle enablers (EVE) for successful penetration in context to India: mitigating the effect of urban sprawl on transportation.
    Rehman MA; Seth D
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107118-107137. PubMed ID: 36849689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of regular and smart grids with PV for Electrification of an academic campus with EV charging.
    Rehman S; Mohammed AB; Alhems L; Alsulaiman F
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77593-77604. PubMed ID: 37261683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuelling the sustainable future: a comparative analysis between battery electrical vehicles (BEV) and fuel cell electrical vehicles (FCEV).
    Parikh A; Shah M; Prajapati M
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57236-57252. PubMed ID: 37010685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.
    Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM
    Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.