These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32333351)

  • 41. Reducing the life cycle environmental impact of electric vehicles through emissions-responsive charging.
    Tang Y; Cockerill TT; Pimm AJ; Yuan X
    iScience; 2021 Dec; 24(12):103499. PubMed ID: 34927031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Environmental and Economic Trade-Offs of City Vehicle Fleet Electrification and Photovoltaic Installation in the U.S. PJM Interconnection.
    Mersky AC; Samaras C
    Environ Sci Technol; 2020 Jan; 54(1):380-389. PubMed ID: 31765560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.
    Peterson SB; Whitacre JF; Apt J
    Environ Sci Technol; 2011 Mar; 45(5):1792-7. PubMed ID: 21309508
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Agrivoltaic systems have the potential to meet energy demands of electric vehicles in rural Oregon, US.
    Steadman CL; Higgins CW
    Sci Rep; 2022 Mar; 12(1):4647. PubMed ID: 35301406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.
    Tong F; Jaramillo P; Azevedo IM
    Environ Sci Technol; 2015 Jun; 49(12):7123-33. PubMed ID: 25938939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Indirect Carbon Emissions and Energy Consumption Model for Electric Vehicles: Indian Scenario.
    Kurien C; Srivastava AK; Molere E
    Integr Environ Assess Manag; 2020 Nov; 16(6):998-1007. PubMed ID: 32543043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective.
    Shafique M; Luo X
    J Environ Manage; 2022 Feb; 303():114050. PubMed ID: 34872799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The inharmonious mechanism of CO
    Wang L; Yu Y; Huang K; Zhang Z; Li X
    J Environ Manage; 2020 Nov; 274():111236. PubMed ID: 32827870
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-stage battery recharge scheduling and vehicle-charger assignment policy for dynamic electric dial-a-ride services.
    Ma TY
    PLoS One; 2021; 16(5):e0251582. PubMed ID: 34014951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Public Health and Climate Benefits and Trade-Offs of U.S. Vehicle Electrification.
    Peters DR; Schnell JL; Kinney PL; Naik V; Horton DE
    Geohealth; 2020 Oct; 4(10):e2020GH000275. PubMed ID: 33094205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of solar photovoltaic carport canopy with electric vehicle charging potential.
    Fakour H; Imani M; Lo SL; Yuan MH; Chen CK; Mobasser S; Muangthai I
    Sci Rep; 2023 Feb; 13(1):2136. PubMed ID: 36746978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading.
    Liao W; Liu L; Fu J
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31461949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Can Artificial Intelligence Enable the Transition to Electric Ambulances?
    Rigas ES; Billis A; Bamidis PD
    Stud Health Technol Inform; 2022 May; 294():73-77. PubMed ID: 35612019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Environmental implication of electric vehicles in China.
    Huo H; Zhang Q; Wang MQ; Streets DG; He K
    Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Global electric vehicle adoption: implementation and policy implications for India.
    Das PK; Bhat MY
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40612-40622. PubMed ID: 35083674
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Cost-Effective Electric Vehicle Intelligent Charge Scheduling Method for Commercial Smart Parking Lots Using a Simplified Convex Relaxation Technique.
    Jawad M; Qureshi MB; Ali SM; Shabbir N; Khan MUS; Aloraini A; Nawaz R
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How Well Do We Know the Future of CO
    Martin NP; Bishop JD; Boies AM
    Environ Sci Technol; 2017 Mar; 51(5):3093-3101. PubMed ID: 28178418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050.
    Milovanoff A; Kim HC; De Kleine R; Wallington TJ; Posen ID; MacLean HL
    Environ Sci Technol; 2019 Feb; 53(4):2199-2208. PubMed ID: 30682256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigating the real-world emission characteristics of light-duty gasoline vehicles and their relationship to local socioeconomic conditions in three communities in Los Angeles, California.
    Park SS; Vijayan A; Mara SL; Herner JD
    J Air Waste Manag Assoc; 2016 Oct; 66(10):1031-44. PubMed ID: 27268732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.