BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32333778)

  • 1. Hydrodynamic Simulations of the Performance Landscape for Suction-Feeding Fishes Reveal Multiple Peaks for Different Prey Types.
    Olsson KH; Martin CH; Holzman R
    Integr Comp Biol; 2020 Nov; 60(5):1251-1267. PubMed ID: 32333778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trophic guilds of suction-feeding fishes are distinguished by their characteristic hydrodynamics of swimming and feeding.
    Olsson KH; Gurka R; Holzman R
    Proc Biol Sci; 2022 Jan; 289(1966):20211968. PubMed ID: 35016537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative modeling approach to elucidate suction-feeding performance.
    Holzman R; Collar DC; Mehta RS; Wainwright PC
    J Exp Biol; 2012 Jan; 215(Pt 1):1-13. PubMed ID: 22162848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new theoretical performance landscape for suction feeding reveals adaptive kinematics in a natural population of reef damselfish.
    Holzman R; Keren T; Kiflawi M; Martin CH; China V; Mann O; Olsson KH
    J Exp Biol; 2022 Jul; 225(13):. PubMed ID: 35647659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body ram, not suction, is the primary axis of suction-feeding diversity in spiny-rayed fishes.
    Longo SJ; McGee MD; Oufiero CE; Waltzek TB; Wainwright PC
    J Exp Biol; 2016 Jan; 219(Pt 1):119-28. PubMed ID: 26596534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes.
    Day SW; Higham TE; Holzman R; Van Wassenbergh S
    Integr Comp Biol; 2015 Jul; 55(1):21-35. PubMed ID: 25980568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved spatio-temporal patterns of suction-feeding flows across aquatic vertebrates: a comparative flow visualization study.
    Jacobs CN; Holzman R
    J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29511070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrodynamic regime drives flow reversals in suction-feeding larval fishes during early ontogeny.
    Krishnan K; Nafi AS; Gurka R; Holzman R
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32253288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic Constraints of Suction Feeding in Low Reynolds Numbers, and the Critical Period of Larval Fishes.
    Holzman R; China V; Yaniv S; Zilka M
    Integr Comp Biol; 2015 Jul; 55(1):48-61. PubMed ID: 25936360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.
    Higham TE; Stewart WJ; Wainwright PC
    Integr Comp Biol; 2015 Jul; 55(1):6-20. PubMed ID: 25980563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suction feeding across fish life stages: flow dynamics from larvae to adults and implications for prey capture.
    Yaniv S; Elad D; Holzman R
    J Exp Biol; 2014 Oct; 217(Pt 20):3748-57. PubMed ID: 25189373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond Suction-Feeding Fishes: Identifying New Approaches to Performance Integration During Prey Capture in Aquatic Vertebrates.
    Kane EA; Cohen HE; Hicks WR; Mahoney ER; Marshall CD
    Integr Comp Biol; 2019 Aug; 59(2):456-472. PubMed ID: 31225594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism.
    Heiss E; Natchev N; Gumpenberger M; Weissenbacher A; Van Wassenbergh S
    J R Soc Interface; 2013 May; 10(82):20121028. PubMed ID: 23466557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights from serranid fishes on the role of trade-offs in suction-feeding diversification.
    Oufiero CE; Holzman RA; Young FA; Wainwright PC
    J Exp Biol; 2012 Nov; 215(Pt 21):3845-55. PubMed ID: 22855615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the use of ram and suction during prey capture by cichlid fishes.
    Wainwright PC; Ferry-Graham LA; Waltzek TB; Carroll AM; Hulsey CD; Grubich JR
    J Exp Biol; 2001 Sep; 204(Pt 17):3039-51. PubMed ID: 11551992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suction, Ram, and Biting: Deviations and Limitations to the Capture of Aquatic Prey.
    Ferry LA; Paig-Tran EM; Gibb AC
    Integr Comp Biol; 2015 Jul; 55(1):97-109. PubMed ID: 25980566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suction feeding mechanics, performance, and diversity in fishes.
    Wainwright P; Carroll AM; Collar DC; Day SW; Higham TE; Holzman RA
    Integr Comp Biol; 2007 Jul; 47(1):96-106. PubMed ID: 21672823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional complexity can mitigate performance trade-offs.
    Holzman R; Collar DC; Mehta RS; Wainwright PC
    Am Nat; 2011 Mar; 177(3):E69-83. PubMed ID: 21460535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelled three-dimensional suction accuracy predicts prey capture success in three species of centrarchid fishes.
    Kane EA; Higham TE
    J R Soc Interface; 2014 Jun; 11(95):20140223. PubMed ID: 24718455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating the determinants of suction feeding performance in centrarchid fishes.
    Holzman R; Day SW; Mehta RS; Wainwright PC
    J Exp Biol; 2008 Oct; 211(Pt 20):3296-305. PubMed ID: 18840664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.