BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32333778)

  • 21. The forces exerted by aquatic suction feeders on their prey.
    Wainwright PC; Day SW
    J R Soc Interface; 2007 Jun; 4(14):553-60. PubMed ID: 17251163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Teleost Intramandibular Joint: A mechanism That Allows Fish to Obtain Prey Unavailable to Suction Feeders.
    Gibb AC; Staab K; Moran C; Ferry LA
    Integr Comp Biol; 2015 Jul; 55(1):85-96. PubMed ID: 26002346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Larval fish counteract ram and suction to capture evasive prey.
    Chang I; Hartline DK; Lenz PH; Takagi D
    R Soc Open Sci; 2022 Nov; 9(11):220714. PubMed ID: 36340513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Jaw protrusion enhances forces exerted on prey by suction feeding fishes.
    Holzman R; Day SW; Mehta RS; Wainwright PC
    J R Soc Interface; 2008 Dec; 5(29):1445-57. PubMed ID: 18544504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Longer development provides first-feeding fish time to escape hydrodynamic constraints.
    Dial TR; Lauder GV
    J Morphol; 2020 Aug; 281(8):956-969. PubMed ID: 32557795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interaction between suction feeding performance and prey escape response determines feeding success in larval fish.
    Sommerfeld N; Holzman R
    J Exp Biol; 2019 Sep; 222(Pt 17):. PubMed ID: 31395675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origins, Innovations, and Diversification of Suction Feeding in Vertebrates.
    Wainwright PC; McGee MD; Longo SJ; Hernandez LP
    Integr Comp Biol; 2015 Jul; 55(1):134-45. PubMed ID: 25920508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensory-Motor Systems of Copepods involved in their Escape from Suction Feeding.
    Yen J; Murphy DW; Fan L; Webster DR
    Integr Comp Biol; 2015 Jul; 55(1):121-33. PubMed ID: 26015485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrodynamic starvation in first-feeding larval fishes.
    China V; Holzman R
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8083-8. PubMed ID: 24843180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aquatic feeding in pipid frogs: the use of suction for prey capture.
    Carreño CA; Nishikawa KC
    J Exp Biol; 2010 Jun; 213(Pt 12):2001-8. PubMed ID: 20511513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish.
    Cade DE; Carey N; Domenici P; Potvin J; Goldbogen JA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):472-478. PubMed ID: 31871184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts.
    Van Wassenbergh S; Heiss E
    Sci Rep; 2016 Jul; 6():29277. PubMed ID: 27383663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey.
    Gemmell BJ; Adhikari D; Longmire EK
    J R Soc Interface; 2014 Jan; 11(90):20130880. PubMed ID: 24227312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Independently evolved upper jaw protrusion mechanisms show convergent hydrodynamic function in teleost fishes.
    Staab KL; Holzman R; Hernandez LP; Wainwright PC
    J Exp Biol; 2012 May; 215(Pt 9):1456-63. PubMed ID: 22496281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of computational fluid dynamics to study forces exerted on prey by aquatic suction feeders.
    Skorczewski T; Cheer A; Cheung S; Wainwright PC
    J R Soc Interface; 2010 Mar; 7(44):475-84. PubMed ID: 19674998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamics of prey capture in sharks: effects of substrate.
    Nauwelaerts S; Wilga C; Sanford C; Lauder G
    J R Soc Interface; 2007 Apr; 4(13):341-5. PubMed ID: 17251144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensing the strike of a predator fish depends on the specific gravity of a prey fish.
    Stewart WJ; McHenry MJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3769-77. PubMed ID: 21037055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A biorobotic model of the suction-feeding system in largemouth bass: the roles of motor program speed and hyoid kinematics.
    Kenaley CP; Lauder GV
    J Exp Biol; 2016 Jul; 219(Pt 13):2048-59. PubMed ID: 27122547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linking cranial kinematics, buccal pressure, and suction feeding performance in largemouth bass.
    Svanbäck R; Wainwright PC; Ferry-Graham LA
    Physiol Biochem Zool; 2002; 75(6):532-43. PubMed ID: 12601610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intraspecific variation in feeding and locomotor kinematics during prey capture in redbreast sunfish (Lepomis auritus).
    Hawkins OH; Crawford CH; Hoover RC; Kane EA
    J Exp Zool A Ecol Integr Physiol; 2023 Oct; 339(8):706-722. PubMed ID: 37306263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.