These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32333902)

  • 1. iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation.
    Charoenkwan P; Nantasenamat C; Hasan MM; Shoombuatong W
    Anal Biochem; 2020 Jun; 599():113747. PubMed ID: 32333902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iTTCA-RF: a random forest predictor for tumor T cell antigens.
    Jiao S; Zou Q; Guo H; Shi L
    J Transl Med; 2021 Oct; 19(1):449. PubMed ID: 34706730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAP 1.0: A robust immunoinformatic tool for the prediction of tumor T-cell antigens based on AAindex properties.
    Herrera-Bravo J; Herrera Belén L; Farias JG; Beltrán JF
    Comput Biol Chem; 2021 Apr; 91():107452. PubMed ID: 33592504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iTTCA-MFF: identifying tumor T cell antigens based on multiple feature fusion.
    Zou H; Yang F; Yin Z
    Immunogenetics; 2022 Oct; 74(5):447-454. PubMed ID: 35246701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PSRTTCA: A new approach for improving the prediction and characterization of tumor T cell antigens using propensity score representation learning.
    Charoenkwan P; Pipattanaboon C; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W
    Comput Biol Med; 2023 Jan; 152():106368. PubMed ID: 36481763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TTAgP 1.0: A computational tool for the specific prediction of tumor T cell antigens.
    Beltrán Lissabet JF; Herrera Belén L; Farias JG
    Comput Biol Chem; 2019 Dec; 83():107103. PubMed ID: 31437642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ELM-MHC: An Improved MHC Identification Method with Extreme Learning Machine Algorithm.
    Li Y; Niu M; Zou Q
    J Proteome Res; 2019 Mar; 18(3):1392-1401. PubMed ID: 30698979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PIP-EL: A New Ensemble Learning Method for Improved Proinflammatory Peptide Predictions.
    Manavalan B; Shin TH; Kim MO; Lee G
    Front Immunol; 2018; 9():1783. PubMed ID: 30108593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Tübingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy.
    Singh-Jasuja H; Emmerich NP; Rammensee HG
    Cancer Immunol Immunother; 2004 Mar; 53(3):187-95. PubMed ID: 14758508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-iPVP: a sequence-based meta-predictor for improving the prediction of phage virion proteins using effective feature representation.
    Charoenkwan P; Nantasenamat C; Hasan MM; Shoombuatong W
    J Comput Aided Mol Des; 2020 Oct; 34(10):1105-1116. PubMed ID: 32557165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct identification of human tumor-associated peptide antigens and a preclinical model to evaluate their use.
    Engelhard VH; Bullock TN; Colella TA; Mullins DW
    Cancer J; 2000 May; 6 Suppl 3():S272-80. PubMed ID: 10874498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing of an integrated artificial neural network and Chou's pseudo amino acid composition approach for computational epitope-mapping of Crimean-Congo haemorrhagic fever virus antigens.
    Nosrati M; Mohabatkar H; Behbahani M
    Int Immunopharmacol; 2020 Jan; 78():106020. PubMed ID: 31776090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune selection in murine tumors. Ph.d thesis.
    Svane IM; Engel AM
    APMIS Suppl; 2003; (106):1-46. PubMed ID: 12739251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides.
    Charoenkwan P; Chiangjong W; Nantasenamat C; Hasan MM; Manavalan B; Shoombuatong W
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of cellular immune responses to antigenic tumor peptides.
    Pietersz GA; Apostolopoulos V; McKenzie IF
    Cell Mol Life Sci; 2000 Feb; 57(2):290-310. PubMed ID: 10766024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretoria: An effective computational approach for accurate and high-throughput identification of CD8
    Charoenkwan P; Schaduangrat N; Pham NT; Manavalan B; Shoombuatong W
    Int J Biol Macromol; 2023 May; 238():124228. PubMed ID: 36996953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.