These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 32334080)
1. Efficient production of large deletion and gene fragment knock-in mice mediated by genome editing with Cas9-mouse Cdt1 in mouse zygotes. Mizuno-Iijima S; Ayabe S; Kato K; Matoba S; Ikeda Y; Dinh TTH; Le HT; Suzuki H; Nakashima K; Hasegawa Y; Hamada Y; Tanimoto Y; Daitoku Y; Iki N; Ishida M; Ibrahim EAE; Nakashiba T; Hamada M; Murata K; Miwa Y; Okada-Iwabu M; Iwabu M; Yagami KI; Ogura A; Obata Y; Takahashi S; Mizuno S; Yoshiki A; Sugiyama F Methods; 2021 Jul; 191():23-31. PubMed ID: 32334080 [TBL] [Abstract][Full Text] [Related]
2. Electroporation and genetic supply of Cas9 increase the generation efficiency of CRISPR/Cas9 knock-in alleles in C57BL/6J mouse zygotes. Alghadban S; Bouchareb A; Hinch R; Hernandez-Pliego P; Biggs D; Preece C; Davies B Sci Rep; 2020 Oct; 10(1):17912. PubMed ID: 33087834 [TBL] [Abstract][Full Text] [Related]
3. Zygote Microinjection for Creating Gene Cassette Knock-in and Flox Alleles in Mice. Tanimoto Y; Mikami N; Ishida M; Iki N; Kato K; Sugiyama F; Takahashi S; Mizuno S J Vis Exp; 2022 Jun; (184):. PubMed ID: 35815994 [TBL] [Abstract][Full Text] [Related]
4. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence. Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482 [TBL] [Abstract][Full Text] [Related]
5. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences. Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360 [TBL] [Abstract][Full Text] [Related]
6. Gene Editing in Mouse Zygotes Using the CRISPR/Cas9 System. Wefers B; Wurst W; Kühn R Methods Mol Biol; 2023; 2631():207-230. PubMed ID: 36995669 [TBL] [Abstract][Full Text] [Related]
7. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9 Endonuclease-Mediated Mouse Genome Editing of One-Cell and/or Two-Cell Embryos by Electroporation, and the Use of Rad51 to Enhance Knock-In Allele Homozygosity via Interhomolog Repair Mechanism. Garza S; Paik R Methods Mol Biol; 2023; 2631():253-266. PubMed ID: 36995671 [TBL] [Abstract][Full Text] [Related]
11. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. Zhang L; Jia R; Palange NJ; Satheka AC; Togo J; An Y; Humphrey M; Ban L; Ji Y; Jin H; Feng X; Zheng Y PLoS One; 2015; 10(3):e0120396. PubMed ID: 25803037 [TBL] [Abstract][Full Text] [Related]
12. Delivery of CRISPR-Cas9 into Mouse Zygotes by Electroporation. Qin W; Wang H Methods Mol Biol; 2019; 1874():179-190. PubMed ID: 30353514 [TBL] [Abstract][Full Text] [Related]
13. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Hashimoto M; Takemoto T Sci Rep; 2015 Jun; 5():11315. PubMed ID: 26066060 [TBL] [Abstract][Full Text] [Related]
14. A novel technique for large-fragment knock-in animal production without ex vivo handling of zygotes. Abe M; Nakatsukasa E; Natsume R; Hamada S; Sakimura K; Watabe AM; Ohtsuka T Sci Rep; 2023 Feb; 13(1):2245. PubMed ID: 36755180 [TBL] [Abstract][Full Text] [Related]
15. Donor template delivery by recombinant adeno-associated virus for the production of knock-in mice. Duddy G; Courtis K; Horwood J; Olsen J; Horsler H; Hodgson T; Varsani-Brown S; Abdullah A; Denti L; Lane H; Delaqua F; Janzen J; Strom M; Rosewell I; Crawley K; Davies B BMC Biol; 2024 Feb; 22(1):26. PubMed ID: 38302906 [TBL] [Abstract][Full Text] [Related]
16. Electroporation-Mediated CRISPR/Cas9 Genome Editing in Rat Zygotes. Davis DJ; Men H; Bryda EC Methods Mol Biol; 2023; 2631():267-276. PubMed ID: 36995672 [TBL] [Abstract][Full Text] [Related]
17. A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination. Ideno N; Yamaguchi H; Okumura T; Huang J; Brun MJ; Ho ML; Suh J; Gupta S; Maitra A; Ghosh B Lab Invest; 2019 Jul; 99(8):1233-1244. PubMed ID: 30728464 [TBL] [Abstract][Full Text] [Related]
18. A non-inheritable maternal Cas9-based multiple-gene editing system in mice. Sakurai T; Kamiyoshi A; Kawate H; Mori C; Watanabe S; Tanaka M; Uetake R; Sato M; Shindo T Sci Rep; 2016 Jan; 6():20011. PubMed ID: 26817415 [TBL] [Abstract][Full Text] [Related]
19. Electroporation-mediated genome editing in vitrified/warmed mouse zygotes created by IVF via ultra-superovulation. Nakagawa Y; Sakuma T; Takeo T; Nakagata N; Yamamoto T Exp Anim; 2018 Nov; 67(4):535-543. PubMed ID: 30012936 [TBL] [Abstract][Full Text] [Related]
20. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. Owen JR; Hennig SL; McNabb BR; Mansour TA; Smith JM; Lin JC; Young AE; Trott JF; Murray JD; Delany ME; Ross PJ; Van Eenennaam AL BMC Genomics; 2021 Feb; 22(1):118. PubMed ID: 33581720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]