These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32334212)

  • 1. Can rain suppress smoldering peat fire?
    Lin S; Cheung YK; Xiao Y; Huang X
    Sci Total Environ; 2020 Jul; 727():138468. PubMed ID: 32334212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental method to investigate the water-based suppression of smoldering peat fire.
    Lin S; Huang X
    MethodsX; 2020; 7():100934. PubMed ID: 32551239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.
    Flanagan NE; Wang H; Winton S; Richardson CJ
    Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century.
    Lin S; Liu Y; Huang X
    Sci Total Environ; 2021 Nov; 796():148924. PubMed ID: 34265612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of fuel type and combustion phase on the toxicity of biomass smoke following inhalation exposure in mice.
    Kim YH; King C; Krantz T; Hargrove MM; George IJ; McGee J; Copeland L; Hays MD; Landis MS; Higuchi M; Gavett SH; Gilmour MI
    Arch Toxicol; 2019 Jun; 93(6):1501-1513. PubMed ID: 31006059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water pollution risks by smoldering fires in degraded peatlands.
    Liu H; Zak D; Zableckis N; Cossmer A; Langhammer N; Meermann B; Lennartz B
    Sci Total Environ; 2023 May; 871():161979. PubMed ID: 36739030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.
    Kumaran NK; Padmalal D; Limaye RB; S VM; Jennerjahn T; Gamre PG
    PLoS One; 2016; 11(5):e0154297. PubMed ID: 27163658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In the line of fire: the peatlands of Southeast Asia.
    Page SE; Hooijer A
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency.
    Wu Y; Zhang N; Slater G; Waddington JM; de Lannoy CF
    Sci Total Environ; 2020 Apr; 714():136444. PubMed ID: 31986381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon emissions from the peat fire problem-a review.
    Che Azmi NA; Mohd Apandi N; A Rashid AS
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):16948-16961. PubMed ID: 33641100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age, extent and carbon storage of the central Congo Basin peatland complex.
    Dargie GC; Lewis SL; Lawson IT; Mitchard ET; Page SE; Bocko YE; Ifo SA
    Nature; 2017 Feb; 542(7639):86-90. PubMed ID: 28077869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential Carbon Losses From Peat Profiles: Effects of Temperature, Drought Cycles, and Fire.
    Hogg EH; Lieffers VJ; Wein RW
    Ecol Appl; 1992 Aug; 2(3):298-306. PubMed ID: 27759264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.
    Cobb AR; Hoyt AM; Gandois L; Eri J; Dommain R; Abu Salim K; Kai FM; Haji Su'ut NS; Harvey CF
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5187-E5196. PubMed ID: 28607068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil palm 'slash-and-burn' practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland.
    Dhandapani S; Evers S
    Sci Total Environ; 2020 Nov; 742():140648. PubMed ID: 32721749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying and addressing knowledge gaps for improving greenhouse gas emissions estimates from tropical peat forest fires.
    Volkova L; Krisnawati H; Adinugroho WC; Imanuddin R; Qirom MA; Santosa PB; Halwany W; Weston CJ
    Sci Total Environ; 2021 Apr; 763():142933. PubMed ID: 33268261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable carbon losses from recurrent fires in drained tropical peatlands.
    Konecny K; Ballhorn U; Navratil P; Jubanski J; Page SE; Tansey K; Hooijer A; Vernimmen R; Siegert F
    Glob Chang Biol; 2016 Apr; 22(4):1469-80. PubMed ID: 26661597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Tropical Peat Fire on Termite Assemblage in Sumatra, Indonesia: Reduced Complexity of Community Structure and Survival Strategies.
    Neoh KB; Bong LJ; Muhammad A; Itoh M; Kozan O; Takematsu Y; Yoshimura T
    Environ Entomol; 2016 Oct; 45(5):1170-1177. PubMed ID: 27550162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying.
    Kettridge N; Lukenbach MC; Hokanson KJ; Devito KJ; Petrone RM; Mendoza CA; Waddington JM
    Sci Rep; 2019 Mar; 9(1):3727. PubMed ID: 30842569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.
    Nijp JJ; Limpens J; Metselaar K; Peichl M; Nilsson MB; van der Zee SE; Berendse F
    Glob Chang Biol; 2015 Jun; 21(6):2309-20. PubMed ID: 25580711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.