BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32334308)

  • 1. Evaluation of pulsed electric fields technology for the improvement of subsequent carotenoid extraction from dried Rhodotorula glutinis yeast.
    Martínez JM; Schottroff F; Haas K; Fauster T; Sajfrtová M; Álvarez I; Raso J; Jaeger H
    Food Chem; 2020 Apr; 323():126824. PubMed ID: 32334308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Method for Selective Extraction of Torularhodin from Red Yeast Using CO
    Ambrico A; Larocca V; Trupo M; Martino M; Magarelli RA; Spagnoletta A; Balducchi R
    Appl Biochem Biotechnol; 2024 Feb; ():. PubMed ID: 38386146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic-solvent-free extraction of carotenoids from yeast Rhodotorula glutinis by application of ultrasound under pressure.
    Martínez JM; Delso C; Aguilar DE; Álvarez I; Raso J
    Ultrason Sonochem; 2020 Mar; 61():104833. PubMed ID: 31669840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving carotenoid extraction from tomato waste by pulsed electric fields.
    Luengo E; Álvarez I; Raso J
    Front Nutr; 2014; 1():12. PubMed ID: 25988115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed Electric Field Treatment Promotes Lipid Extraction on Fresh Oleaginous Yeast
    Gorte O; Nazarova N; Papachristou I; Wüstner R; Leber K; Syldatk C; Ochsenreither K; Frey W; Silve A
    Front Bioeng Biotechnol; 2020; 8():575379. PubMed ID: 33015025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of olive mill wastewater for selective production of lipids and carotenoids by Rhodotorula glutinis.
    Keskin A; Ünlü AE; Takaç S
    Appl Microbiol Biotechnol; 2023 Aug; 107(15):4973-4985. PubMed ID: 37329489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of pulsed electric field permeabilization to extract astaxanthin from the Nordic microalga Haematococcus pluvialis.
    Martínez JM; Gojkovic Z; Ferro L; Maza M; Álvarez I; Raso J; Funk C
    Bioresour Technol; 2019 Oct; 289():121694. PubMed ID: 31254897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic Processes Triggered by PEF for Astaxanthin Extraction From
    Aguilar-Machado D; Delso C; Martinez JM; Morales-Oyervides L; Montañez J; Raso J
    Front Bioeng Biotechnol; 2020; 8():857. PubMed ID: 32903677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains.
    Kot AM; Sęk W; Kieliszek M; Błażejak S; Pobiega K; Brzezińska R
    Appl Biochem Biotechnol; 2024 Jun; 196(6):3274-3316. PubMed ID: 37646889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic and Metabolomic Analyses Provide Insights into the Enhancement of Torulene and Torularhodin Production in
    Li C; Cheng P; Li Z; Xu Y; Sun Y; Qin D; Yu G
    J Agric Food Chem; 2021 Sep; 69(38):11523-11533. PubMed ID: 34545740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrifugal partition extraction, a new method for direct metabolites recovery from culture broth: case study of torularhodin recovery from Rhodotorula rubra.
    Ungureanu C; Marchal L; Chirvase AA; Foucault A
    Bioresour Technol; 2013 Mar; 132():406-9. PubMed ID: 23260274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation.
    Zhang Z; Zhang X; Tan T
    Bioresour Technol; 2014 Apr; 157():149-53. PubMed ID: 24549236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon.
    Katherine LS; Edgar CC; Jerry WK; Luke RH; Julie CD
    Bioresour Technol; 2008 Nov; 99(16):7835-41. PubMed ID: 18378137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation.
    Sakaki H; Nakanishi T; Tada A; Miki W; Komemushi S
    J Biosci Bioeng; 2001; 92(3):294-7. PubMed ID: 16233099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis].
    Davoli P; Mierau V; Weber RW
    Prikl Biokhim Mikrobiol; 2004; 40(4):460-5. PubMed ID: 15455720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the lipid extraction performance in a cascade process for Scenedesmus almeriensis biorefinery.
    Papachristou I; Akaberi S; Silve A; Navarro-López E; Wüstner R; Leber K; Nazarova N; Müller G; Frey W
    Biotechnol Biofuels; 2021 Jan; 14(1):20. PubMed ID: 33446259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of carotenoids by rhodotorula glutinis in whey ultrafiltrate.
    Frengova G; Simova E; Pavlova K; Beshkova D; Grigorova D
    Biotechnol Bioeng; 1994 Oct; 44(8):888-94. PubMed ID: 18618906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass.
    Breierová E; Gregor T; Marová I; Certík M; Kogan G
    Chem Biodivers; 2008 Mar; 5(3):440-6. PubMed ID: 18357552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caroteno-protein and exopolysaccharide production by co-cultures of Rhodotorula glutinis and Lactobacillus helveticus.
    Frengova G; Simova E; Beshkova D
    J Ind Microbiol Biotechnol; 1997 Apr; 18(4):272-7. PubMed ID: 9172434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup.
    Buzzini P
    J Appl Microbiol; 2001 May; 90(5):843-7. PubMed ID: 11348447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.