BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 32334359)

  • 1. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models.
    Kumar M; Shukla SK; Upadhyay SN; Mishra PK
    Bioresour Technol; 2020 Aug; 310():123393. PubMed ID: 32334359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses.
    Singh RK; Pandey D; Patil T; Sawarkar AN
    Bioresour Technol; 2020 Aug; 310():123464. PubMed ID: 32388356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights on kinetic triplets and thermodynamic analysis of Delonix regia biomass pyrolysis.
    Rammohan D; Kishore N; Uppaluri RVS
    Bioresour Technol; 2022 Aug; 358():127375. PubMed ID: 35623604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of thermodynamic and kinetic parameters of Albizia lebbeck seed pods using thermogravimetric analysis.
    Rajamohan S; Chidambaresh S; Sundarrajan H; Balakrishnan S; Sirohi R; Cao DN; Hoang AT
    Bioresour Technol; 2023 Sep; 384():129333. PubMed ID: 37321307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermogravimetric and kinetic studies of metal (Ru/Fe) impregnated banana pseudo-stem (Musa acuminate).
    Kumar A; Mylapilli SVP; Reddy SN
    Bioresour Technol; 2019 Aug; 285():121318. PubMed ID: 30981011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis of Musa balbisiana flower petal using thermogravimetric studies.
    Sriram A; Swaminathan G
    Bioresour Technol; 2018 Oct; 265():236-246. PubMed ID: 29902656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass valorization of Eichhornia crassipes root using thermogravimetric analysis.
    Pal DB; Tiwari AK; Srivastava N; Ahmad I; Abohashrh M; Gupta VK
    Environ Res; 2022 Nov; 214(Pt 4):114046. PubMed ID: 35998700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Montmorillonite clay on pyrolysis of paper mill waste.
    Kumar M; Upadhyay SN; Mishra PK
    Bioresour Technol; 2020 Jul; 307():123161. PubMed ID: 32217435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis.
    Fong MJB; Loy ACM; Chin BLF; Lam MK; Yusup S; Jawad ZA
    Bioresour Technol; 2019 Oct; 289():121689. PubMed ID: 31252316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-chemical potential of solid waste seed biomass obtained from plant Phoenix dactylifera and Aegle marmelos L. Fruit core cell.
    Pal DB; Tiwari AK; Prasad N; Srivastava N; Almalki AH; Haque S; Gupta VK
    Bioresour Technol; 2022 Feb; 345():126441. PubMed ID: 34852282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies.
    Rasool T; Najar I; Srivastava VC; Pandey A
    Bioresour Technol; 2021 Oct; 337():125466. PubMed ID: 34320746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignocellulosic composition based thermal kinetic study of Mangiferaindica Lam, Artocarpus Heterophyllus Lam and Syzygium Jambolana seeds.
    Pal DB; Srivastava N; Pal SL; Kumar M; Syed A; Elgorban AM; Singh R; Gupta VK
    Bioresour Technol; 2021 Dec; 341():125891. PubMed ID: 34523576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermo-chemical behaviour of Dunaliella salina biomass and valorising their biochar for naphthalene removal from aqueous rural environment.
    Nama M; Satasiya G; Sahoo TP; Moradeeya PG; Sadukha S; Singhal K; Saravaia HT; Dineshkumar R; Anil Kumar M
    Chemosphere; 2024 Apr; 353():141639. PubMed ID: 38447902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis of petroleum coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis.
    Singh RK; Patil T; Pandey D; Tekade SP; Sawarkar AN
    J Environ Manage; 2022 Jan; 301():113854. PubMed ID: 34607141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis.
    Ceylan S; Topçu Y
    Bioresour Technol; 2014 Mar; 156():182-8. PubMed ID: 24508656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst.
    Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E
    Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential.
    Ahmad MS; Mehmood MA; Al Ayed OS; Ye G; Luo H; Ibrahim M; Rashid U; Arbi Nehdi I; Qadir G
    Bioresour Technol; 2017 Jan; 224():708-713. PubMed ID: 27838316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis.
    Boubacar Laougé Z; Merdun H
    Bioresour Technol; 2020 Mar; 299():122602. PubMed ID: 31869633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.