These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32334526)

  • 1. GiniClust3: a fast and memory-efficient tool for rare cell type identification.
    Dong R; Yuan GC
    BMC Bioinformatics; 2020 Apr; 21(1):158. PubMed ID: 32334526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection.
    Tsoucas D; Yuan GC
    Genome Biol; 2018 May; 19(1):58. PubMed ID: 29747686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. visnormsc: A Graphical User Interface to Normalize Single-cell RNA Sequencing Data.
    Tang L; Zhou N
    Interdiscip Sci; 2018 Sep; 10(3):636-640. PubMed ID: 29280088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scDIOR: single cell RNA-seq data IO software.
    Feng H; Lin L; Chen J
    BMC Bioinformatics; 2022 Jan; 23(1):16. PubMed ID: 34991457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data.
    Feng D; Whitehurst CE; Shan D; Hill JD; Yue YG
    BMC Genomics; 2019 Aug; 20(1):676. PubMed ID: 31455220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ORdensity: user-friendly R package to identify differentially expressed genes.
    Martínez-Otzeta JM; Irigoien I; Sierra B; Arenas C
    BMC Bioinformatics; 2020 Apr; 21(1):135. PubMed ID: 32264950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast clustering of single-cell flow cytometry data using FlowGrid.
    Ye X; Ho JWK
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):35. PubMed ID: 30953498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data.
    Sun S; Chen Y; Liu Y; Shang X
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):28. PubMed ID: 30953530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions.
    Suner A
    Stat Appl Genet Mol Biol; 2019 Aug; 18(5):. PubMed ID: 31646845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data.
    Dhapola P; Rodhe J; Olofzon R; Bonald T; Erlandsson E; Soneji S; Karlsson G
    Nat Commun; 2022 Aug; 13(1):4616. PubMed ID: 35941103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADAPTS: Automated deconvolution augmentation of profiles for tissue specific cells.
    Danziger SA; Gibbs DL; Shmulevich I; McConnell M; Trotter MWB; Schmitz F; Reiss DJ; Ratushny AV
    PLoS One; 2019; 14(11):e0224693. PubMed ID: 31743345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench.
    Chazarra-Gil R; van Dongen S; Kiselev VY; Hemberg M
    Nucleic Acids Res; 2021 Apr; 49(7):e42. PubMed ID: 33524142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RASflow: an RNA-Seq analysis workflow with Snakemake.
    Zhang X; Jonassen I
    BMC Bioinformatics; 2020 Mar; 21(1):110. PubMed ID: 32183729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data.
    Leng N; Choi J; Chu LF; Thomson JA; Kendziorski C; Stewart R
    Bioinformatics; 2016 May; 32(9):1408-10. PubMed ID: 26743507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes.
    Srivastava A; Sarkar H; Gupta N; Patro R
    Bioinformatics; 2016 Jun; 32(12):i192-i200. PubMed ID: 27307617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.