BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32335260)

  • 1. Controlling for the effect of arterial-CO
    Golestani AM; Chen JJ
    Neuroimage; 2020 Aug; 216():116874. PubMed ID: 32335260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate.
    Golestani AM; Chang C; Kwinta JB; Khatamian YB; Jean Chen J
    Neuroimage; 2015 Jan; 104():266-77. PubMed ID: 25462695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
    Golestani AM; Wei LL; Chen JJ
    Neuroimage; 2016 Sep; 138():147-163. PubMed ID: 27177763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing end-tidal CO
    Zvolanek KM; Moia S; Dean JN; Stickland RC; Caballero-Gaudes C; Bright MG
    Neuroimage; 2023 May; 272():120038. PubMed ID: 36958618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arterial CO2 effects modulate dynamic functional connectivity in resting-state fMRI.
    Nikolaou F; Orphanidou C; Wise RG; Mitsis GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1809-12. PubMed ID: 26736631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: The influence of basal carbon dioxide.
    Golestani AM; Kwinta JB; Strother SC; Khatamian YB; Chen JJ
    Neuroimage; 2016 May; 132():301-313. PubMed ID: 26908321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-related BOLD responses and resting-state functional connectivity during physiological clamping of end-tidal CO(2).
    Madjar C; Gauthier CJ; Bellec P; Birn RM; Brooks JC; Hoge RD
    Neuroimage; 2012 May; 61(1):41-9. PubMed ID: 22418394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of respiratory CO2 fluctuations in the resting-state BOLD signal differ between eyes open and eyes closed.
    Peng T; Niazy R; Payne SJ; Wise RG
    Magn Reson Imaging; 2013 Apr; 31(3):336-45. PubMed ID: 22921940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Low-Frequency Physiological Correction on the Reproducibility and Specificity of Resting-State fMRI Metrics: Functional Connectivity, ALFF, and ReHo.
    Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Front Neurosci; 2017; 11():546. PubMed ID: 29051724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise.
    Harita S; Stroman PW
    Magn Reson Med; 2017 Dec; 78(6):2149-2156. PubMed ID: 28074492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of CO
    McKetton L; Sam K; Poublanc J; Crawley AP; Sobczyk O; Venkatraghavan L; Duffin J; Fisher JA; Mikulis DJ
    Front Physiol; 2021; 12():639782. PubMed ID: 34054565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of clamping end-tidal CO
    Kish B; Chen JJ; Tong Y
    NMR Biomed; 2024 Jul; 37(7):e5084. PubMed ID: 38104563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping dependencies of BOLD signal change to end-tidal CO
    Cauzzo S; Callara AL; Morelli MS; Hartwig V; Esposito F; Montanaro D; Passino C; Emdin M; Giannoni A; Vanello N
    J Neurosci Methods; 2021 Oct; 362():109317. PubMed ID: 34380051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
    Khalili-Mahani N; Chang C; van Osch MJ; Veer IM; van Buchem MA; Dahan A; Beckmann CF; van Gerven JM; Rombouts SA
    Neuroimage; 2013 Jan; 65():499-510. PubMed ID: 23022093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating dynamic carbon-dioxide traces from respiration-belt recordings: Feasibility using neural networks and application in functional magnetic resonance imaging.
    Agrawal V; Zhong XZ; Chen JJ
    Front Neuroimaging; 2023; 2():1119539. PubMed ID: 37554640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of hypocapnic cerebrovascular reactivity measurements using BOLD fMRI in combination with a paced deep breathing task.
    Sousa I; Vilela P; Figueiredo P
    Neuroimage; 2014 Sep; 98():31-41. PubMed ID: 24769177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI.
    Almgren H; Van de Steen F; Razi A; Friston K; Marinazzo D
    Neuroimage; 2020 Mar; 208():116435. PubMed ID: 31816423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of nuisance removal for functional MRI of rodent brain.
    Chuang KH; Lee HL; Li Z; Chang WT; Nasrallah FA; Yeow LY; Singh KKDR
    Neuroimage; 2019 Mar; 188():694-709. PubMed ID: 30593905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart Rate and Respiration Affect the Functional Connectivity of Default Mode Network in Resting-State Functional Magnetic Resonance Imaging.
    Yoshikawa A; Masaoka Y; Yoshida M; Koiwa N; Honma M; Watanabe K; Kubota S; Natsuko I; Ida M; Izumizaki M
    Front Neurosci; 2020; 14():631. PubMed ID: 32694974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuisance effects in inter-scan functional connectivity estimates before and after nuisance regression.
    Nalci A; Luo W; Liu TT
    Neuroimage; 2019 Nov; 202():116005. PubMed ID: 31336189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.