These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32335262)
1. Long-distance aberrant heterotopic connectivity in a mouse strain with a high incidence of callosal anomalies. Szczupak D; Liu C; Yen CCC; Choi SH; Meireles F; Victorino C; ; Richards L; Lent R; Silva AC; Tovar-Moll F Neuroimage; 2020 Aug; 217():116875. PubMed ID: 32335262 [TBL] [Abstract][Full Text] [Related]
2. Altered structural connectivity networks in a mouse model of complete and partial dysgenesis of the corpus callosum. Edwards TJ; Fenlon LR; Dean RJ; Bunt J; ; Sherr EH; Richards LJ Neuroimage; 2020 Aug; 217():116868. PubMed ID: 32360691 [TBL] [Abstract][Full Text] [Related]
3. Organising white matter in a brain without corpus callosum fibres. Bénézit A; Hertz-Pannier L; Dehaene-Lambertz G; Monzalvo K; Germanaud D; Duclap D; Guevara P; Mangin JF; Poupon C; Moutard ML; Dubois J Cortex; 2015 Feb; 63():155-71. PubMed ID: 25282054 [TBL] [Abstract][Full Text] [Related]
4. The relevance of heterotopic callosal fibers to interhemispheric connectivity of the mammalian brain. Szczupak D; Iack PM; Rayêe D; Liu C; Lent R; Tovar-Moll F; Silva AC Cereb Cortex; 2023 Apr; 33(8):4752-4760. PubMed ID: 36178137 [TBL] [Abstract][Full Text] [Related]
5. Assessing prenatal white matter connectivity in commissural agenesis. Kasprian G; Brugger PC; Schöpf V; Mitter C; Weber M; Hainfellner JA; Prayer D Brain; 2013 Jan; 136(Pt 1):168-79. PubMed ID: 23365096 [TBL] [Abstract][Full Text] [Related]
6. Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. Jakab A; Kasprian G; Schwartz E; Gruber GM; Mitter C; Prayer D; Schöpf V; Langs G Neuroimage; 2015 May; 111():277-88. PubMed ID: 25725467 [TBL] [Abstract][Full Text] [Related]
7. Direct Interhemispheric Cortical Communication via Thalamic Commissures: A New White-Matter Pathway in the Rodent Brain. Szczupak D; Iack PM; Liu C; ; Tovar-Moll F; Lent R; Silva AC Cereb Cortex; 2021 Aug; 31(10):4642-4651. PubMed ID: 33999140 [TBL] [Abstract][Full Text] [Related]
8. Heterotopic connectivity of callosal dysgenesis in mice and humans. Szczupak D; Lent R; Tovar-Moll F; Silva AC Front Neurosci; 2023; 17():1191859. PubMed ID: 37274193 [TBL] [Abstract][Full Text] [Related]
9. Diffusion tensor MR imaging visualizes the altered hemispheric fiber connection in callosal dysgenesis. Lee SK; Mori S; Kim DJ; Kim SY; Kim SY; Kim DI AJNR Am J Neuroradiol; 2004 Jan; 25(1):25-8. PubMed ID: 14729523 [TBL] [Abstract][Full Text] [Related]
10. Neuroplasticity in human callosal dysgenesis: a diffusion tensor imaging study. Tovar-Moll F; Moll J; de Oliveira-Souza R; Bramati I; Andreiuolo PA; Lent R Cereb Cortex; 2007 Mar; 17(3):531-41. PubMed ID: 16627861 [TBL] [Abstract][Full Text] [Related]
11. The use of diffusion tractography to characterize a corpus callosum malformation in a dog. Johnson PJ; Barry EF; Luh WM; Davies E J Vet Intern Med; 2019 Mar; 33(2):743-750. PubMed ID: 30588678 [TBL] [Abstract][Full Text] [Related]
12. Variability of homotopic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3T diffusion tensor imaging and Q-ball tractography study. Wahl M; Strominger Z; Jeremy RJ; Barkovich AJ; Wakahiro M; Sherr EH; Mukherjee P AJNR Am J Neuroradiol; 2009 Feb; 30(2):282-9. PubMed ID: 19001538 [TBL] [Abstract][Full Text] [Related]
13. Structural Connectivity Analysis in Children with Segmental Callosal Agenesis. Severino M; Tortora D; Toselli B; Uccella S; Traverso M; Morana G; Capra V; Veneselli E; Fato MM; Rossi A AJNR Am J Neuroradiol; 2017 Mar; 38(3):639-647. PubMed ID: 28104634 [TBL] [Abstract][Full Text] [Related]
14. Revisiting brain rewiring and plasticity in children born without corpus callosum. Siffredi V; Preti MG; Obertino S; Leventer RJ; Wood AG; McIlroy A; Anderson V; Spencer-Smith MM; Van De Ville D Dev Sci; 2021 Nov; 24(6):e13126. PubMed ID: 34060677 [TBL] [Abstract][Full Text] [Related]
15. Structural Neuroplastic Responses Preserve Functional Connectivity and Neurobehavioural Outcomes in Children Born Without Corpus Callosum. Siffredi V; Preti MG; Kebets V; Obertino S; Leventer RJ; McIlroy A; Wood AG; Anderson V; Spencer-Smith MM; Van De Ville D Cereb Cortex; 2021 Jan; 31(2):1227-1239. PubMed ID: 33108795 [TBL] [Abstract][Full Text] [Related]
16. The Organization of the Human Corpus Callosum Estimated by Intrinsic Functional Connectivity with White-Matter Functional Networks. Wang P; Meng C; Yuan R; Wang J; Yang H; Zhang T; Zaborszky L; Alvarez TL; Liao W; Luo C; Chen H; Biswal BB Cereb Cortex; 2020 May; 30(5):3313-3324. PubMed ID: 32080708 [TBL] [Abstract][Full Text] [Related]
17. Topography of interhemispheric connections in neocortex of mice with congenital deficiencies of the callosal commissure. Olavarria J; Serra-Oller MM; Yee KT; Van Sluyters RC J Comp Neurol; 1988 Apr; 270(4):575-90. PubMed ID: 3372749 [TBL] [Abstract][Full Text] [Related]
18. Feasibility and Added Value of Fetal DTI Tractography in the Evaluation of an Isolated Short Corpus Callosum: Preliminary Results. Millischer AE; Grevent D; Sonigo P; Bahi-Buisson N; Desguerre I; Mahallati H; Bault JP; Quibel T; Couderc S; Moutard ML; Julien E; Dangouloff V; Bessieres B; Malan V; Attie T; Salomon LJ; Boddaert N AJNR Am J Neuroradiol; 2022 Jan; 43(1):132-138. PubMed ID: 34949593 [TBL] [Abstract][Full Text] [Related]
19. Large-scale functional network dynamics in human callosal agenesis: Increased subcortical involvement and preserved laterality. Siffredi V; Farouj Y; Tarun A; Anderson V; Wood AG; McIlroy A; Leventer RJ; Spencer-Smith MM; Ville DV Neuroimage; 2021 Nov; 243():118471. PubMed ID: 34455063 [TBL] [Abstract][Full Text] [Related]