These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32335383)

  • 1. Effect of respiratory inhibitors on mitochondrial complexes and ADP/ATP translocators in the Triticum aestivum roots.
    Gazizova N; Rakhmatullina D; Minibayeva F
    Plant Physiol Biochem; 2020 Jun; 151():601-607. PubMed ID: 32335383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial morphology and dynamics in Triticum aestivum roots in response to rotenone and antimycin A.
    Rakhmatullina D; Ponomareva A; Gazizova N; Minibayeva F
    Protoplasma; 2016 Sep; 253(5):1299-308. PubMed ID: 26411562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.
    Nath S
    Biomol Concepts; 2022 May; 13(1):272-288. PubMed ID: 35617665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Respiration of wheat root cells under simultaneous inhibition of parts I and III of the electron transport chain of mitochondria by rotenone and antimycine A].
    Rakhmatullina DF; Gordon LKh; Ogorodnikova TI
    Tsitologiia; 2005; 47(3):230-6. PubMed ID: 16706167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE).
    Jha P; Wang X; Auwerx J
    Curr Protoc Mouse Biol; 2016 Mar; 6(1):1-14. PubMed ID: 26928661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OXPHOS Organization and Activity in Mitochondria of Plants with Different Life Strategies.
    Ukolova IV; Borovskii GB
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes.
    Wang Y; Mohsen AW; Mihalik SJ; Goetzman ES; Vockley J
    J Biol Chem; 2010 Sep; 285(39):29834-41. PubMed ID: 20663895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Mitochondrial Respiratory Chain Complexes in Cultured Human Cells using Blue Native Polyacrylamide Gel Electrophoresis and Immunoblotting.
    Konovalova S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
    Dudkina NV; Sunderhaus S; Boekema EJ; Braun HP
    J Bioenerg Biomembr; 2008 Oct; 40(5):419-24. PubMed ID: 18839290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/SDS-PAGE.
    Reifschneider NH; Goto S; Nakamoto H; Takahashi R; Sugawa M; Dencher NA; Krause F
    J Proteome Res; 2006 May; 5(5):1117-32. PubMed ID: 16674101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue-Native Electrophoresis to Study the OXPHOS Complexes.
    Fernandez-Vizarra E; Zeviani M
    Methods Mol Biol; 2021; 2192():287-311. PubMed ID: 33230780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II.
    Eubel H; Jänsch L; Braun HP
    Plant Physiol; 2003 Sep; 133(1):274-86. PubMed ID: 12970493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BN-PAGE analysis of the respiratory chain complexes in mitochondria of cucumber MSC16 mutant.
    Juszczuk IM; Rychter AM
    Plant Physiol Biochem; 2009 May; 47(5):397-406. PubMed ID: 19181534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing Oligomerization Status of Mitochondrial OXPHOS Complexes Via Blue Native Page.
    Woytash J; Inigo JR; Chandra D
    Methods Mol Biol; 2022; 2413():55-62. PubMed ID: 35044654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases.
    Rossignol R; Letellier T; Malgat M; Rocher C; Mazat JP
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):45-53. PubMed ID: 10727400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome alterations in rat mitochondria caused by aging.
    Dencher NA; Frenzel M; Reifschneider NH; Sugawa M; Krause F
    Ann N Y Acad Sci; 2007 Apr; 1100():291-8. PubMed ID: 17460190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Oxidative Phosphorylation system of the mitochondria in plants.
    Braun HP
    Mitochondrion; 2020 Jul; 53():66-75. PubMed ID: 32334143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization.
    Johnson K; Jung A; Murphy A; Andreyev A; Dykens J; Terkeltaub R
    Arthritis Rheum; 2000 Jul; 43(7):1560-70. PubMed ID: 10902761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria from human term placenta. II. Characterization of respiratory pathways and coupling mechanisms.
    Olivera AA; Meigs RA
    Biochim Biophys Acta; 1975 Mar; 376(3):436-45. PubMed ID: 47760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.