These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32335438)

  • 1. Acid treated RHWBAC electrode performance for Cr(VI) removal by capacitive deionization and CFD analysis study.
    Gaikwad MS; Balomajumder C; Tiwari AK
    Chemosphere; 2020 Sep; 254():126781. PubMed ID: 32335438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tea waste biomass activated carbon electrode for simultaneous removal of Cr(VI) and fluoride by capacitive deionization.
    Gaikwad MS; Balomajumder C
    Chemosphere; 2017 Oct; 184():1141-1149. PubMed ID: 28672695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption studies of Cr(VI) from aqueous solution using bio-char as an adsorbent.
    Hyder AH; Begum SA; Egiebor NO
    Water Sci Technol; 2014; 69(11):2265-71. PubMed ID: 24901621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Removal of Chromium(VI) Using a Novel Waste Biomass Chestnut Shell-Based Carbon Electrode by Electrosorption.
    Zhang X; Ren B; Wu X; Yan X; Sun Y; Gao H; Qu F
    ACS Omega; 2021 Oct; 6(39):25389-25396. PubMed ID: 34632197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of sulphuric acid-carbonization products of sugar beet pulp in Cr(VI) removal.
    Altundogan HS; Bahar N; Mujde B; Tumen F
    J Hazard Mater; 2007 Jun; 144(1-2):255-64. PubMed ID: 17084024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization and performance of an electrospun carbon nanofiber mat applied in hexavalent chromium removal from aqueous solution.
    Yuan Z; Cheng X; Zhong L; Wu R; Zheng Y
    J Environ Sci (China); 2019 Mar; 77():75-84. PubMed ID: 30573108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitive deionization of high concentrations of hexavalent chromium using nickel-ferric-layered double hydroxide/molybdenum disulfide asymmetric electrode.
    Yang D; Li X; Li Y; Song W; Yan T; Cui Y; Yan L
    J Colloid Interface Sci; 2023 Mar; 634():793-803. PubMed ID: 36565621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions.
    Agrafioti E; Kalderis D; Diamadopoulos E
    J Environ Manage; 2014 Dec; 146():444-450. PubMed ID: 25199600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorptive removal of Sr
    Liu X; Wang J
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):3182-3195. PubMed ID: 32902750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanin-embedded materials effectively remove hexavalent chromium (Cr
    Cuong AM; Le Na NT; Thang PN; Diep TN; Thuy LB; Thanh NL; Thang ND
    Environ Health Prev Med; 2018 Feb; 23(1):9. PubMed ID: 29471789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode.
    Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S
    Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on removal of chromium (VI) from water using chitosan coated Cyperus pangorei.
    Malarvizhi R; Venkateswarlu Y; Ravi Babu V; Syghana Begum S
    Water Sci Technol; 2010; 62(10):2435-41. PubMed ID: 21076231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZnCl
    Wu S; Yan P; Yang W; Zhou J; Wang H; Che L; Zhu P
    Chemosphere; 2021 Feb; 264(Pt 2):128557. PubMed ID: 33049504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies.
    Nemr AE
    J Hazard Mater; 2009 Jan; 161(1):132-41. PubMed ID: 18485590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced phosphorus electrosorption using Fe, N-co-doped porous electrode via capacitive deionization.
    Chen X; Song X; Chen W; Ao T
    Environ Technol; 2024 Jul; 45(17):3381-3395. PubMed ID: 37191243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.