These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32335738)

  • 1. Evaluation of the In Vivo Biological Effects of Marine Collagen and Hydroxyapatite Composite in a Tibial Bone Defect Model in Rats.
    Parisi JR; Fernandes KR; de Almeida Cruz M; Avanzi IR; de França Santana A; do Vale GCA; de Andrade ALM; de Góes CP; Fortulan CA; de Sousa Trichês E; Granito RN; Rennó ACM
    Mar Biotechnol (NY); 2020 Jun; 22(3):357-366. PubMed ID: 32335738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation.
    Parisi JR; Fernandes KR; Avanzi IR; Dorileo BP; Santana AF; Andrade AL; Gabbai-Armelin PR; Fortulan CA; Trichês ES; Granito RN; Renno ACM
    Mar Biotechnol (NY); 2019 Feb; 21(1):30-37. PubMed ID: 30218326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study.
    Parisi JR; Fernandes KR; Aparecida do Vale GC; de França Santana A; de Almeida Cruz M; Fortulan CA; Zanotto ED; Peitl O; Granito RN; Rennó ACM
    J Biomater Appl; 2020 Aug; 35(2):205-214. PubMed ID: 32362163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats.
    de A Cruz M; Sousa KSJ; Avanzi IR; de Souza A; Martignago CCS; Delpupo FVB; Simões MC; Parisi JR; Assis L; De Oliveira F; Granito RN; Laakso EL; Renno A
    Mar Biotechnol (NY); 2024 Oct; 26(5):1053-1066. PubMed ID: 39153015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects.
    Cruz MA; Fernandes KR; Parisi JR; Vale GCA; Junior SRA; Freitas FR; Sales AFS; Fortulan CA; Peitl O; Zanotto E; Granito RN; Ribeiro AM; Renno ACM
    J Bone Miner Metab; 2020 Sep; 38(5):639-647. PubMed ID: 32303916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering.
    Pallela R; Venkatesan J; Janapala VR; Kim SK
    J Biomed Mater Res A; 2012 Feb; 100(2):486-95. PubMed ID: 22125128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed scaffolds of biosilica and spongin from marine sponges: analysis of genotoxicity and cytotoxicity for bone tissue repair.
    Dos Santos Jorge Sousa K; de Souza A; de Almeida Cruz M; de Lima LE; do Espirito Santo G; Amaral GO; Granito RN; Renno AC
    Bioprocess Biosyst Eng; 2024 Sep; 47(9):1483-1498. PubMed ID: 38869621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study.
    Fernandes KR; Parisi JR; Magri AMP; Kido HW; Gabbai-Armelin PR; Fortulan CA; Zanotto ED; Peitl O; Granito RN; Renno ACM
    J Mater Sci Mater Med; 2019 May; 30(6):64. PubMed ID: 31127392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects - an experimental study in osteoporotic goats.
    Alt V; Cheung WH; Chow SK; Thormann U; Cheung EN; Lips KS; Schnettler R; Leung KS
    Injury; 2016 Jun; 47 Suppl 2():S58-65. PubMed ID: 27338229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair.
    Appleford MR; Oh S; Oh N; Ong JL
    J Biomed Mater Res A; 2009 Jun; 89(4):1019-27. PubMed ID: 18478555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering.
    He X; Fan X; Feng W; Chen Y; Guo T; Wang F; Liu J; Tang K
    Int J Biol Macromol; 2018 Aug; 115():385-392. PubMed ID: 29673955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration.
    Samadikuchaksaraei A; Gholipourmalekabadi M; Erfani Ezadyar E; Azami M; Mozafari M; Johari B; Kargozar S; Jameie SB; Korourian A; Seifalian AM
    J Biomed Mater Res A; 2016 Aug; 104(8):2001-10. PubMed ID: 27027855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations.
    El-Fiqi A; Kim JH; Kim HW
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of collagen/chitosan sponges mineralized with hydroxyapatite for the repair of cranial defects in rats.
    Munhoz MAS; Hirata HH; Plepis AMG; Martins VCA; Cunha MR
    Injury; 2018 Dec; 49(12):2154-2160. PubMed ID: 30268514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study.
    Daugela P; Pranskunas M; Juodzbalys G; Liesiene J; Baniukaitiene O; Afonso A; Sousa Gomes P
    J Tissue Eng Regen Med; 2018 May; 12(5):1195-1208. PubMed ID: 29498222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats.
    Meimandi-Parizi A; Oryan A; Gholipour H
    Connect Tissue Res; 2018 Jul; 59(4):332-344. PubMed ID: 29035127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.
    Salgado CL; Grenho L; Fernandes MH; Colaço BJ; Monteiro FJ
    J Biomed Mater Res A; 2016 Jan; 104(1):57-70. PubMed ID: 26179958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect.
    Wang G; Yang H; Li M; Lu S; Chen X; Cai X
    J Bone Joint Surg Br; 2010 Feb; 92(2):320-5. PubMed ID: 20130332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histopathological, histomorphometrical, and radiological evaluations of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as cell scaffolds in rat tibia: an in vivo study.
    Seyedmajidi M; Haghanifar S; Hajian-Tilaki K; Seyedmajidi S
    Biomed Mater; 2018 Jan; 13(2):025015. PubMed ID: 29133624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced healing of rat calvarial critical size defect with selenium-doped lamellar biocomposites.
    Wang Y; Lv P; Ma Z; Zhang J
    Biol Trace Elem Res; 2013 Oct; 155(1):72-81. PubMed ID: 23892698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.